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Summary

The arrival of 3D scanning has created a new wave of digital media after sound, images, and video, ras-

ing the need for digital processing algorithms. Traditionally fine detail geometry is represented through

unstructured polygonal meshes. Such meshes are ackward for editing, filtering, and compression appli-

cations. In this course we propose a new paradigm based on semi-regular meshes, constructed through

a process of recursive quadrisection. Several research results have shown their many advantages. We

will show how to build semi-regular meshes from unstructured polygonal meshes and raw range data,

and how to build applications such as filtering, editing, simulation, and compression using semi-regular

meshes.
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Digital Geometry Processing

Peter Schr¨oder Wim Sweldens

Introduction

Multi-media has seen three waves so far: sound, images, and video. We are presently witnessing the arrival of the
fourth wave of digital multi-media: geometry.

Each one of these waves was initiated by increases in acquisition capabilities, compute power, storage capacity,
and transmission bandwidth for the respective type of data. As Moore’s law moved along, we first saw digital sound
in the 70’s, digital images in the 80’s, and digital video in the 90’s. Soon an average PC will be able to handle digital
geometry.

Each new digitization wave brings with it the need for new processing tools. Typical elements of a signal process-
ing toolbox are: denoising, compression, transmission, enhancement, detection, analysis, editing, etc. While analog
circuitry can only handle the most basic processing tasks, as soon as the data is digitized a whole new realm of algo-
rithms becomes feasible. This has lead to an explosion in digital signal processing research, aimed at the development
of suitable mathematical representations, their manipulation and associated computational paradigms.

One example is the ubiquitous use of digital sound from portable CD players to musical instruments and digital
cellular phones. More recently, increasing network bandwidth and compute power have contributed to a revolution in
the distribution of music over networks and on personal computers. Similar observations can be made about images
and video.

In a sense, the cheap and plentiful availability of a data type has led to a spur in the development of methods to
wring usefulness from this data, which in turn has stimulated progress in the underlying technology to support the
respective type of data.

In much a similar way we are now witnessing the arrival of a new data type, 3D geometry. To be sure, geometric
modeling has been around for a long time, but geometry was created “by hand” in a tedious custom process. Strides
in the acquisition of 3D geometry through low and high end 3D scanners is now making digital proxies of geometry
available for processing in a much broader way. Example sources of such geometry range from the sculptures of
Michelangelo1, to manufactured products2 and the earth itself.3

Once again we need to build a toolbox of fundamental algorithms and mathematics to process this new class of
digital geometry data. This time the task issignificantlymore challenging than before.

Fourier or not Fourier

Multi-media data of the first three waves can be modeled easily as being defined on a section of Euclidean geometry.
Sound is defined as a function of time, i.e., on a 1D line. Similarly, images are naturally defined as functions over a
section of a 2D plane. Finally, video is most naturally modeled as a function over a section of 3D, two dimensions in
space and one in time. Another useful abstraction is that of sampling. A given datatype is digitized by sampling it at
regular intervals (either space or time) and converting the measured values into binary numbers. The act of sampling
and the regular spacing between samples make Fourier analysis and the Fourier transform the quintessential tools to
understand and manipulate the content of such signals. If the underlying mathematical space where not Euclidean the
regular spacing of samples could not be achieved. For example, consider a sphere. There are no equi-spaced sampling
patterns on the sphere beyond those given by the five Platonic solids. A digital image produced by one of today’s
cameras on the other hand is a regular matrix of picture elements, each representing a sample of the image irradiance
on the 2D image plane.

1Digital Michelangelo Project, Stanford University; models with> 10
9 samples.

2Reverse engineering and non-invasive inspection.
3See the recent shuttle radar topography mission, for example.
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This regular sampling allows the computation of the Fast Fourier Transform (FFT), one of the most popular algo-
rithms in digital signal processing. Once in the Fourier domain it is easy to remove noise, for example, or to enhance
the image4. Recently new multiresolution and time-frequency based methods such as wavelets have proven to be a
valuable alternative to the Fourier transform in many applications. They introduce the notion of scale into the analysis.
For example, some phenomena being measured may occur at a broader scale, while others appear at a finer scale.
Adding this element allows us to zoom in and out of particular features in the data, yet even these methods still rely
on the Fourier transform for their design and analysis.

Geometry on the other hand relies in an essential way on a non-Euclidean setting: curves, surfaces, and more
generally manifolds. Unfortunately, curved geometry does not readily admit a Fourier transform let alone a fast
transform algorithm. Additional complications arise in software and hardware implementations. What used to be
simple arrays or streams of regularly arranged data is now a complex topological data structure requiring much more
sophisticated algorithms to handle. In general there is no way around these difficulties when the underlying geometry
is not flat. For example, consider data defined on a sphere, such as measurements which are a function of direction.
One could map the sphere to a section of the plane and then use regular sampling and Fourier transforms. However, it
is well known that no such mapping can avoid singularities resulting in uncontrollable artifacts. Instead one needs to
take the essential nature of the sphere into account. These arguments apply even more so when the underlying surface
is more complicated.

Luckily some recent techniques inspired by wavelet constructions and commonly referred to as “multiresolution
algorithms” offer a basis for the development of adigital geometry processingtoolbox. These techniques, developed at
the intersection of mathematics (wavelet analysis) and computer science (graphics), are based onsubdivision, lifting,
andsecond generation waveletsand carry over to the curved geometry setting.

Figure 1: Example of subdivision for a surface, showing 3 successive levels of refinement. On the left an initial triangle
mesh approximating the surface. Each triangle is split into 4 according to a particular subdivision rule (middle). On
the right the mesh is subdivided in this fashion once again.

The Power of Semi-regular Meshes

We have seen above that it is impossible to keep the regularity, i.e., the regular Cartesian arrangement of samples, of
the Euclidean setting when going to surfaces. However, we can do almost as well using so calledsemi-regularmeshes.
These are constructed through a process of recursive quadrisection, an idea which originated in the area of subdivision.
Starting with a coarse mesh consisting of a generally small number of triangles each triangle is recursively split into

4In practice algorithms often do not perform an actual Fourier transform to achieve these effects. No less, the Fourier transform is essential to
understanding how to design and analyze such algorithms.



four subtriangles. In standard subdivision, where this approach is used to produce smooth surfaces, the new point
positions are computed based on local averaging. A few steps in such a sequence are shown in Figure 1. Instead we
use point positions which are samples of the desired geometry, in effect adding displacements, or wavelet details, to
a subdivision surface. This combination of subdivision and details, or wavelets, can be compared to the Euclidean
geometry signal processing setting with its low and high pass filters. While the results from that setting are not
immediately applicable to the surface setting, they do provide guidance.

Because of the recursive quadrisection process by which these sampling patterns are built we can build fast hierar-
chical transforms. These generalize the fast wavelet transform to the surface setting. While it is much harder to prove
smoothness and approximation properties in this more general setting first results exists and are extremely encourag-
ing. For example, these constructions can be used for very efficient progressive transmission algorithms. Imagine a
file format for geometry which has the property that the first bits in the file provide a rough outline of the shape and as
more bits arrive more and more details of the shape are revealed.

Conclusions

The fourth wave of multimedia, which consists of geometry, creates new mathematical and algorithmic challenges
which cannot be answered with straightforward extensions of signal processing techniques from the Euclidean setting.
However, ideas from multiresolution, subdivision, and second generation wavelets provide the foundation of a new
digital geometry processing apparatus based on semi-regular meshes.
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History of Multimedia
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Digital Geometry
Digitized 3D objects
� 4th wave of digital multimedia

Needs processing
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Digital Michelangelo

© Digital Michelangelo Project

Stanford University 
The Soprintendenza ai beni artistici
e storici per le province di Firenze,
Pistoia, e Prato.
Mark Levoy, Director
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Geometry Processing
Stages
� Creation, acquisition
� Storage, transmission
� Authentication
� Editing, animation
� Simulation
� Manufacture
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Digital Geometry
Applications
� Cad
� E-catalogs
� Mass customization
� Electronic games
� Medicine & biology
� Art history & archeology
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Challenge
Traditional signal processing
� Based on Fourier techniques

� Decompose in sines and cosines

� Only for Euclidean, flat geometry
� Does not easily generalize
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Storyline
Follow stages
� Acquisition
� Remeshing
� Subdivision/details
� Processing
� Compression
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Remeshing: Wim/Igor
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� Easier
� Datastructure, algorithms
� Allows subdivision, details
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From range scanners to surfaces

Brian Curless
University of Washington

SIGGRAPH 01 Course on
Digital Geometry Processing

Overview

Range imaging scannersRange imaging scanners
••Imaging radarImaging radar
••TriangulationTriangulation

Reconstruction from range imagesReconstruction from range images
••ZipperingZippering
••Volumetric mergingVolumetric merging
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Optical range acquisition

Strengths
• Non-contact
• Safe
• Inexpensive (?)
• Fast

Limitations
• Can only acquire visible portions of the surface
• Sensitivity to surface properties

> transparency, shininess, rapid color variations, 
darkness (no reflected light), subsurface scatter

• Confused by interreflections

Structure of the data
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Imaging radar: time of flight

A pulse of light is emitted, and the time of the 
reflected pulse is recorded:

c t  = 2 r = roundtrip distance
Typical scanning configuration:

Imaging radar: Amplitude Modulation

The current to a laser diode is driven at frequency:
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Imaging radar: Amplitude Modulation

Note the ambiguity due to the + 2πn.  This 
translates into range ambiguity:

2
AM

ambig
nr λ=

The ambiguity can be overcome with sweeps of 
increasingly finer wavelengths.

Optical triangulation

A beam of light strikes the surface, and some of 
the light bounces toward an off-axis sensor.

The center of the imaged reflection is triangulated 
against the laser line of sight.
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Optical triangulation

Lenses map planes to planes.  If the object plane 
is tilted, then so should the image plane.

The image plane tilt is described by the 
Scheimpflug condition:

where M is the on-axis magnification. 

M
θα tantan =

Triangulation scanning configurations

Moving the laser relative to the camera means loss 
of focus.  
Can instead move the laser and camera together, 
e.g., by translating or rotating a scanning unit.
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Triangulation scanning configurations

A novel design was created and patented at the 
NRC of Canada [Rioux’87].
Basic idea: sweep the laser and sensor 
simultaneously.

Triangulation scanning configurations

Extension to 3D achievable as:
• flying spot
• sweeping light stripe
• hand-held light stripe on jointed arm



7

Multi-spot and multi-stripe triangulation

For faster acquisition, some scanners use multiple 
spots or stripes.
Trade off depth-of-field for speed.  
Problem: ambiguity.

Binary coded illumination

Alternative: resolve visibility hierarchically (logN).
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Range images

For many structured light scanners, the range data 
forms a highly regular pattern known as a range 
image.

The sampling pattern is determined by the specific 
scanner.

Examples of sampling patterns
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Range images and range surfaces

Given a range image, we can perform a preliminary 
reconstruction known as a range surface.

Tessellation threshold

To avoid “prematurely aggressive” reconstruction, 
a tessellation threshold is employed:
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Point clouds vs. range images

We can view the entire set of range data as a point 
cloud or as a group of overlapping range surfaces.

Surface reconstruction

Given a set of registered range points or images, 
we want to reconstruct a 2D manifold that closely 
approximates the surface of the original model.

In this presentation we will focus on two methods 
for reconstruction from range images:

• Zippering
• Volumetric merging
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Desirable properties

Desirable properties for surface reconstruction:
• No restriction on topological type
• Representation of range uncertainty
• Utilization of all range data
• Incremental and order independent updating
• Time and space efficiency
• Robustness
• Ability to fill holes in the reconstruction

Zippering

A number of methods combine range surfaces by 
stitching polygon meshes together.

Zippering [Turk’94] is one such method. 

Overview:
• Tessellate range images and assign weights to 

vertices
• Remove redundant triangles
• Zipper meshes together
• Extract a consensus geometry
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Weight assignment

Final surface will be weighted combination of 
range images.

Weights are assigned at each vertex to:
• Favor views with higher sampling rates
• Encourage smooth blends between range images

Weights for sampling rates

Sampling rate over the surface is highest when 
view direction is parallel to surface normal.
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Weights for smooth blends

To assure smooth blends, weights are forced to 
taper in the vicinity of boundaries:

Example

Range surface Confidence rendering
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Redundancy removal and zippering

Example
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Consensus geometry

Example
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Volumetrically combining range images

Combining the meshes volumetrically can 
overcome difficulties of stitching polygon meshes.

Here we describe the method of [Curless’96].

Overview:
• Convert range images to signed distance functions
• Combine signed distance functions
• Carve away empty space
• Extract hole-free isosurface

Signed distance function
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Combining signed distance functions

Merging surfaces in 2D
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Least squares solution

Least squares solution

Finding the f(x) that minimizes E yields the optimal 
surface.
This f(x) is exactly the zero-crossing of the 
combined signed distance functions.

Error per point

Error per range surface

E( f ) = di
2∫

i=1

N

∑ (x, f )dx



19

Hole filling

We have presented an algorithm that reconstructs the 
observed surface.  Unseen portions appear as holes in 
the reconstruction.

A hole-free mesh is useful for:
• Fitting surfaces to meshes
• Manufacturing models (e.g., stereolithography)
• Aesthetic renderings

Hole filling

We can fill holes in the polygonal model directly, 
but such methods:

• are hard to make robust

• do not use all available information
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Space carving

Carving without a backdrop
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Carving with a backdrop

Merging 12 views of a drill bit
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Merging 12 views of a drill bit

Dragon model
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Dragon model

Happy Buddha
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Abstract
Range imaging offers an inexpensive and accurate means for

digitizing the shape of three-dimensional objects.  Because most
objects self occlude, no single range image suffices to describe the
entire object.  We present a method for combining a collection of
range images into a single polygonal mesh that completely describes
an object to the extent that it is visible from the outside.

The steps in our method are:  1) align the meshes with each other
using a modified iterated closest-point algorithm, 2) zipper together
adjacent meshes to form a continuous surface that correctly captures
the topology of the object, and 3) compute local weighted averages
of surface positions on all meshes to form a consensus surface
geometry.

Our system differs from previous approaches in that it is incre-
mental; scans are acquired and combined one at a time.  This
approach allows us to acquire and combine large numbers of scans
with minimal storage overhead.  Our largest models contain up to
360,000 triangles.  All the steps needed to digitize an object  that
requires up to 10 range scans can be performed using our system with
five minutes of user interaction and a few hours of compute time.  We
show two models created using our method with range data from a
commercial rangefinder that employs laser stripe technology.

CR Categories: I.3.5 [Computer Graphics]:  Computational Geom-
etry and Object Modelling.
Additional Key Words: Surface reconstruction, surface fitting,
polygon mesh, range images, structured light range scanner.

1  Introduction
This paper presents a method of combining multiple views of an

object, captured by a range scanner, and assembling these views into
one unbroken polygonal surface.  Applications for such a method
include:

• Digitizing complex objects for animation and visual simulation.
• Digitizing the shape of a found object such as an archaeological

artifact for measurement and for dissemination to the scientific
community.

• Digitizing human external anatomy for surgical planning,
remote consultation or the compilation of anatomical atlases.

• Digitizing the shape of a damaged machine part to help create
a replacement.

There is currently no procedure that will allow a user to easily
capture a digital description of a physical object.  The dream tool
would allow one to set an industrial part or a clay figure onto a
platform, press a button, and have a complete digital description of
that object returned in a few minutes.  The reality is that much
digitization is done by a user painstakingly touching a 3D sensing
probe to hundreds or thousands of positions on the object, then
manually specifying the connectivity of these points.  Fortunately
range scanners offer promise in replacing this tedious operation.

A range scanner is any device that senses 3D positions on an
object’s surface and returns an array of distance values.  A range
image is an m×n grid of distances (range points) that describe a
surface either in Cartesian coordinates (a height field) or cylindrical
coordinates, with two of the coordinates being implicitly defined by
the indices of the grid.  Quite a number of measurement techniques
can be used to create a range image, including structured light,
time-of-flight lasers, radar, sonar, and several methods from the
computer vision literature such as depth from stereo, shading, tex-
ture, motion and focus.  The range images used to create the models
in this paper were captured using structured light (described later),
but our techniques can be used with any range images where the
uncertainties of the distance values are smaller than the spacing
between the samples.

Range scanners seem like a natural solution to the problem of
capturing a digital description of physical objects.  Unfortunately,
few objects are simple enough that they can be fully described by a
single range image.  For instance, a coffee cup handle will obscure
a portion of the cup’s surface even using a cylindrical scan.  To
capture the full geometry of a moderately complicated object (e.g. a
clay model of a cat) may require as many as a dozen range images.

There are two main issues in creating a single model from multiple
range images: registration and integration.  Registration refers to
computing a rigid transformation that brings the points of one range
image into alignment with the portions of a surface that is shares with
another range image.  Integration is the process of creating a single
surface representation from the sample points from two or more
range images.

Our approach to registration uses an iterative process to minimize
the distance between two triangle meshes that were created from the
range images.  We accelerate registration by performing the match-
ing on a hierarchy of increasingly more detailed meshes.  This
method allows an object to be scanned from any orientation without
the need for a six-degree-of-freedom motion device.

Zippered Polygon Meshes from Range Images

Greg Turk and Marc Levoy
Computer Science Department

Stanford University

E-mail: turk@redclay.stanford.edu, levoy@cs.stanford.edu
Web site: www-graphics.stanford.edu



We separate the task of integration into two steps:  1) creating a
mesh that reflects the topology of the object, and 2) refining the
vertex positions of the mesh by averaging the geometric detail that is
present in all scans.  We capture the topology of an object by merging
pairs of triangle meshes that are each created from a single range
image.  Merging begins by converting two meshes that may have
considerable overlap into a pair of meshes that just barely overlap
along portions of their boundaries.  This is done by simultaneously
eating back the boundaries of each mesh that lie directly on top of the
other mesh.  Next, the meshes are zippered together: the triangles of
one mesh are clipped to the boundary of the other mesh and the
vertices on the boundary are shared.  Once all the meshes have been
combined, we allow all of the scans to contribute to the surface detail
by finding the consensus geometry.  The final position of a vertex is
found by taking an average of nearby positions from each of the
original range images.  The order in which we perform zippering and
consensus geometry is important.  We deliberately postpone the
refinement of surface geometry until after the overall shape of the
object has been determined.  This eliminates discontinuities that may
be introduced during zippering.

The remainder of this paper is organized as follows.  Section 2
describes previous work on combining range images.  Section 3
covers the basic principles of a structured light range scanner.
Section 4 presents the automatic registration process.  Section 5
describes zippering meshes into one continuous surface.   Section 6
describes how surface detail is captured through consensus geom-
etry.  Section 7 shows examples of digitized models and compares
our approach to other methods of combining range data.  Section 8
concludes this paper by discussing future work.

2  Previous Work
There is a great deal of published work on registration and

integration of depth information, particularly in the vision literature.
Our literature review only covers work on registration or integration
of dense range data captured by an active range scanner, and where
the product of the integration is a polygon mesh.

2.1 Registration
Two themes dominate work in range image registration: matching

of “created” features in the images to be matched, and minimization
of distances between all points on the surface represented by the two
images.  In the first category, Wada and co-authors performed six
degree of freedom registration by matching distinctive facets from
the convex hulls of range images [Wada 93].  They computed a
rotation matrix from corresponding facets using a least squares fit of
the normal vectors of the facets.

In the second category, Champleboux and co-workers used a data
structure called an octree-spline that is a sampled representation of
distances to an object’s surface [Champleboux 92].  This gave them
a rapid way to determine distances from a surface (and the distance
gradient) with a low overhead in storage.  Chen and Medioni
establish a correspondence between points on one surface and nearby
tangent planes on the other surface [Chen 92].  They find a rigid
motion that minimizes the point-to-tangent collection directly and
then iterate.  Besl and McKay use an approach they call the iterated
closest-point algorithm [Besl 92]. This method finds the nearest
positions on one surface to a collection of points on the other surface
and then transforms one surface so as to minimize the collective
distance.  They iterate this procedure until convergence.

Our registration method falls into the general category of direct
distance minimization algorithms, and is an adaptation of [Besl 92].
It differs in that we do not require that one surface be a strict subset
of the other.  It is described in Section 4.

2.2 Integration
Integration of multiple range scans can be classified into struc-

tured and unstructured methods.  Unstructured integration presumes

that one has a procedure that creates a polygonal surface from an
arbitrary collection of points in 3-space.  Integration in this case is
performed by collecting together all the range points from multiple
scans and presenting them to the polygonal reconstruction proce-
dure.  The Delaunay triangulation of a set of points in 3-space has
been proposed as the basis of one such reconstruction method
[Boissonnat 84].  Another candidate for surface reconstruction is a
generalization of the convex hull of a point set known as the alpha
shape [Edelsbrunner 92].  Hoppe and co-authors use graph traversal
techniques to help construct a signed distance function from a
collection of unorganized points [Hoppe 92].  An isosurface extrac-
tion technique produces a polygon mesh from this distance function.

Structured integration methods make use of information about
how each point was obtained, such as using error bounds on a point’s
position or adjacency information between points within one range
image.  Soucy and Laurendeau use a structured integration technique
to combine multiple range images [Soucy 92] that is similar in
several respects to our algorithm.  Given n range images of an object,
they first partition the points into a number of sets that are called
common surface sets.  The range points in one set are then used to
create a grid of triangles whose positions are guided by a weighted
average of the points in the set.  Subsets of these grids are stitched
together by a constrained Delaunay triangulation in one of n  projec-
tions onto a plane.  We compare our method to Soucy’s in Section 7.

3  Structured Light Range Scanners
In this section we describe the operating principles of range

scanners based on structured light.  We do this because it highlights
issues common to many range scanners and also because the range
images used in this article were created by such a scanner.

3.1 Triangulation
Structured light scanners operate on the principle of triangulation

(see Figure 1, left).  One portion of the scanner projects a specific
pattern of light onto the object being scanned.  This pattern of light
is observed by the sensor of the scanner along a viewing direction that
is off-axis from the source of light.  The position of the illuminated
part of the object is determined by finding the intersection of the
light’s projected direction and the viewing direction of the sensor.
Positions can be accumulated across the length of the object while the
object is moved across the path of the projected light.  Some of the
patterns that have been used in such scanners include a spot, a circle,
a line, and several lines at once.  Typically the sensor is a CCD array
or a lateral effect photodiode.

The scanner used for the examples in this paper is a Cyberware
Model 3030 MS.  It projects a vertical sheet of He-Ne laser light onto
the surface of an object.  The laser sheet is created by spreading a laser
beam using a cylindrical lens into a sheet roughly 2 mm wide and 30
cm high.  The sensor of the Cyberware scanner is a 768 × 486 pixel
CCD array.  A typical CCD image shows a ribbon of laser light
running from the top to the bottom (see Figure 2).  A range point is
created by looking across a scanline for the peak intensity of this
ribbon. A range point’s distance from the scanner (the “depth”) is
given by the horizontal position of this peak and the vertical position
of the range point is given by the number of the scanline.  Finding the
peaks for each scanline in one frame gives an entire column of range
points, and combining the columns from multiple frames as the
object is moved through the laser sheet gives the full range image.

3.2 Sources of Error
Any approach to combining range scans should attempt to take

into account the possible sources of error inherent in a given scanner.
Two sources of error are particularly relevant to integration.  One is
a result of light falling on the object at a grazing angle.  When the
projected light falls on a portion of the object that is nearly parallel
to the light’s path, the sensor sees a dim and stretched-out version of
the pattern.  Finding the center of the laser sheet when it grazes the



object becomes difficult, and this adds uncertainty to the position of
the range points.  The degree of uncertainty at a given range point can
be quantified, and we make use of such information at several stages
in our approach to combining range images.

A second source of inaccuracy occurs when only a portion of the
laser sheet hits an object, such as when the laser sheet falls off the
edge of a book that is perpendicular to the laser sheet (see Figure 1,
right).  This results in a false position because the peak-detection and
triangulation method assumes that the entire width of the sheet is
visible.  Such an assumption results in edges of objects that are both
curled and extended beyond their correct position.  This false
extension of a surface at edges is an issue that needs to be specifically
addressed when combining range images.

3.3 Creating Triangle Meshes from Range Images
We use a mesh of triangles to represent the range image data at all

stages of our integration method.  Each sample point in the m×n range
image is a potential vertex in the triangle mesh.  We take special care
to avoid inadvertently joining portions of the surface together that are
separated by depth discontinuities (see Figure 3).

To build a mesh, we create zero, one or two triangles from four
points of a range image that are in adjacent rows and columns.  We
find the shortest of the two diagonals between the points and use this
to identify the two triplets of points that may become triangles.  Each
of these point triples is made into a triangle if the edge lengths fall
below a distance threshold.  Let s be the maximum distance between
adjacent range points when we flatten the range image, that is, when
we don’t include the depth information (see Figure 3).  We take the
distance threshold be a small multiple of this sampling distance,
typically 4s.  Although having such a distance threshold may prevent
joining some range points that should in fact be connected, we can
rely on other range images (those with better views of the location in
question) to give the correct adjacency information.

This willingness to discard questionable data is representative of
a deliberate overall strategy: to acquire and process large amounts of
data rather than draw hypotheses (possibly erroneous) from sparse
data.  This strategy appears in several places in our algorithm.

4  Registration of Range Images
Once a triangle mesh is created for each range image, we turn to

the task of bringing corresponding portions of different range images
into alignment with one another.  If all range images are captured
using a six-degree of freedom precision motion device then the
information needed to register them is available from the motion
control software.  This is the case when the object or scanner is
mounted on a robot arm or the motion platform of a precision milling
machine.  Inexpensive motion platforms are often limited to one or
two degrees of freedom, typically translation in a single direction or
rotation about an axis.  One of our goals is to create an inexpensive
system.  Consequently, we employ a registration method that does
not depend on measured position and orientation.  With our scanner,
which offers translation and rotation around one axis, we typically
take one cylindrical and four translational scans by moving the object
with the motion device.  To capture the top or the underside of the
object, we pick it up by hand and place it on its side.  Now the
orientation of subsequent scans cannot be matched with those taken
earlier, and using a registration method becomes mandatory.

4.1 Iterated Closest-Point Algorithm
This section describes a modified iterated closest-point (ICP)

algorithm for quickly registering a pair of meshes created from range
images.  This method allows a user to crudely align one range image
with another on-screen and then invoke an algorithm that snaps the
position of one range image into accurate alignment with the other.

The iterated closest-point of [Besl 92] cannot be used to register
range images because it requires that every point on one surface have

Figure 1:  Structured light triangulation (left) and false edge extension in the presence of a partially illuminated edge (right).
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a corresponding point on the other surface.  Since our scans are
overlapping, we seldom produce data that satisfies this requirement.
Thus we have developed our own variant of this algorithm.  Its steps
are:

1) Find the nearest position on mesh A to each vertex of mesh B.
2) Discard pairs of points that are too far apart.
3) Eliminate pairs in which either points is on a mesh boundary.
4) Find the rigid transformation that minimizes a weighted

least-squared distance between the pairs of points.
5) Iterate until convergence.
6) Perform ICP on a more detailed mesh in the hierarchy.

In step 1, it is important to note that we are looking for the 3-space
position A

i
 on the surface of mesh A that is closest to a given vertex

B
i
 of mesh B (see Figure 4).  The nearest point A

i
 may be a vertex of

A, may be a point within a triangle, or may lie on a triangle’s edge.
Allowing these points A

i
 to be anywhere on a C0 continuous surface

means that the registration between surfaces can have greater accu-
racy than the spacing s between range points.

4.2 Constraints on ICP
Our ICP algorithm differs from Besl’s in several ways.  First, we

have added a distance threshold to the basic iterated closest-point
method to avoid matching any vertex B

i
 of one mesh to a remote part

of another mesh that is likely to not correspond to B
i
.  Such a vertex

B
i
 from mesh B might be from a portion of the scanned object that was

not captured in the mesh A, and thus no pairing should be made to any
point on A.  We have found that excellent registration will result when
this distance threshold is set to twice the spacing s between range
points.  Limiting the distance between pairs of corresponding points
allows us to perform step 2 (eliminating remote pairs) during the
nearest points search in step 1.

The nearest points search can be accelerated considerably by
placing the mesh vertices in a uniform subdivision of space based on
the distance threshold.  Because the triangle size is limited in the
mesh creation step, we can search over all triangles within a fixed
distance and guarantee that we miss no nearby portion of any triangle.
Because we will use this constrained nearest-point search again later,
it is worth giving a name to this query.  Let nearest_on_mesh(P,d,M)
be a routine that returns the nearest position on a mesh M to a given
point P, or that returns nothing if there is no such point within the
distance d.

Second, we have added the restriction that we never allow
boundary points to be part of a match between surfaces.  Boundary
points are those points that lie on the edge of a triangle and where that
edge is not shared by another triangle.  Figure 4 illustrates how such
matches can drag a mesh in a contrary direction to the majority of the
point correspondences.

4.3 Best Rigid Motion
The heart of the iterated closest-point approach is in finding a rigid

transformation that minimizes the least-squared distance between

the point pairs.  Berthold Horn describes a closed-form solution to
this problem [Horn 87] that is linear in time with respect to the
number of point pairs.  Horn’s method finds the translation vector T
and the rotation R such that:

is minimized, where A
i
 and B

i
 are given pairs of positions in

3-space and B
c
 is the centroid of the B

i
.  Horn showed that T is just the

difference between the centroid of the points A
i
 and the centroid of the

points B
i
.  R is found by constructing a cross-covariance matrix

between centroid-adjusted pairs of points.  The final rotation is given
by a unit quaternion that is the eigenvector corresponding to the
largest eigenvalue of a matrix constructed from the elements of this
cross-covariance matrix.  Details can be found in both [Horn 87] and
[Besl 92].

As we discussed earlier, not all range points have the same error
bounds on their position.  We can take advantage of an optional
weighting term in Horn’s minimization to incorporate the positional
uncertainties into the registration process.  Let a value in the range
from 0 to 1 called confidence be a measure of how certain we are of
a given range point’s position.  For the case of structured light
scanners, we take the confidence of a point P on a mesh to be the dot
product of the mesh normal N at P and the vector L that points from
P to the light source of the scanner.  (We take the normal at P to be
the average of the normals of the triangles that meet at P.)  Addition-
ally, we lower the confidence of vertices near the mesh boundaries
to take into account possible error due to false edge extension and
curl.  We take the confidence of a pair of corresponding points A

i
 and

B
i
 from two meshes to be the product of their confidences, and we will

use w
i
 to represent this value.  The problem is now to find a weighted

least-squares minimum:

The weighted minimization problem is solved in much the same
way as before.  The translation factor T is just the difference between
the weighted centroids of the corresponding points.  The solution for
R is described by Horn.

4.4 Alignment in Practice
The above registration method can be made faster by matching

increasingly more detailed meshes from a hierarchy.  We typically
use a mesh hierarchy in which each mesh uses one-forth the number
of range points that are used in the next higher level.  The less-
detailed meshes in this hierarchy are constructed by sub-sampling the
range images.  Registration begins by running constrained ICP on the
lowest-level mesh and then using the resulting transformation as the
initial position for the next level up in the hierarchy.  The matching
distance threshold d is halved with each move up the hierarchy.

Besl and McKay describe how to use linear and quadratic extrapo-
lation of the registration parameters to accelerate the alignment
process.  We use this technique for our alignment at each level in the
hierarchy, and find it works well in practice.  Details of this method
can be found in their paper.

The constrained ICP algorithm registers only two meshes at a
time, and there is no obvious extension that will register three or more
meshes simultaneously.  This is the case with all the registration
algorithms we know.  If we have meshes A, B, C and D, should we
register A with B, then B with C and finally C with D, perhaps
compounding registration errors?  We can minimize this problem by
registering all meshes to a single mesh that is created from a
cylindrical range image.  In this way the cylindrical range image acts
as a common anchor for all of the other meshes.  Note that if a
cylindrical scan covers an object from top to bottom, it captures all
the surfaces that lie on the convex hull of the object.  This means that,

Mesh A

Mesh B

Figure 4:  Finding corresponding points for mesh registration.
Dotted arrows show matches that should be avoided because
they will cause mesh B to be erroneously dragged up and left.
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for almost all objects, there will be some common portions between
the cylindrical scan and all linear scans, although the degree of this
overlap depends on the extent of the concavities of the object.  We
used such a cylindrical scan for alignment when constructing the
models shown in this paper.

5  Integration: Mesh Zippering
The central step in combining range images is the integration of

multiple views into a single model.  The goal of integration is to arrive
at a description of the overall topology of the object being scanned.
In this section we examine how two triangle meshes can be combined
into a single surface.  The full topology of a surface is realized by
zippering new range scans one by one into the final triangle mesh.

Zippering two triangle meshes consists of three steps, each of
which we will consider in detail below:

1) Remove overlapping portions of the meshes.
2) Clip one mesh against another.
3) Remove the small triangles introduced during clipping.

5.1 Removing Redundant Surfaces
Before attempting to join a pair of meshes, we eat away at the

boundaries of both meshes until they just meet.  We remove those
triangles in each mesh that are in some sense “redundant,” in that the
other mesh includes an unbroken surface at that same position in
space.  Although this step removes triangles from the meshes, we are
not discarding data since all range points eventually will be used to
find the consensus geometry (Section 6).  Given two triangle meshes
A and B, here is the process that removes their redundant portions:

Repeat until both meshes remain unchanged:
Remove redundant triangles on the boundary of mesh A
Remove redundant triangles on the boundary of mesh B

Before we can remove a given triangle T from mesh A, we need
to determine whether the triangle is redundant.  We accomplish this
by querying mesh B using the nearest_on_mesh() routine that was
introduced earlier.  In particular, we ask for the nearest positions on
mesh B to the vertices V

1
, V

2
 and V

3
 of T.  We will declare T to be

redundant if the three queries return positions on B that are within a
tolerance distance d and if none of these positions are on the boundary
of B.  Figure 7 shows two overlapping surfaces before and after
removing their redundant triangles.  In some cases this particular
decision procedure for removing triangles will leave tiny gaps where
the meshes meet.  The resulting holes are no larger than the maximum
triangle size and we currently fill them in an automatic post-processing
step to zippering.  Using the fast triangle redundancy check was an
implementation decision for the sake of efficiency, not a necessary
characteristic of our zippering approach, and it could easily be
replaced by a more cautious redundancy check that leaves no gaps.
We have not found this necessary in practice.

If we have a measure of confidence of the vertex positions (as we
do for structured light scanners), then the above method can be
altered to preserve the more confident vertices.  When checking to
see if the vertices V

1
, V

2
 and V

3
 of T lie within the distance tolerance

of mesh B, we also determine whether at least two of these vertices
have a lower confidence measure than the nearby points on B.  If this
is the case, we allow the triangle to be removed.  When no more
triangles can be removed from the boundaries of either mesh, we drop
this confidence value restriction and continue the process until no
more changes can be made.  This procedure results in a pair of meshes
that meet along boundaries of nearly equal confidences.

5.2 Mesh Clipping
We now describe how triangle clipping can be used to smoothly

join two meshes that slightly overlap.  The left portion of Figure 5
shows two overlapping meshes and the right portion shows the result
of clipping.  Let us examine the clipping process in greater detail, and

for the time being make the assumption that we are operating on two
meshes that lie in a common plane.

To clip mesh A against the boundary of mesh B we first need to add
new vertices to the boundary of B.  Specifically, we place a new
vertex wherever an edge of a triangle from mesh A intersects the
boundary of mesh B.  Let Q be the set of all such new vertices.
Together, the new vertices in Q and the old boundary vertices of mesh
B will form a common boundary that the triangles from both meshes
will share.  Once this new boundary is formed we need to incorporate
the vertices Q into the triangles that share this boundary.  Triangles
from mesh B need only to be split once for each new vertex to be
incorporated (shown in Figure 5, right).  Then we need to divide each
border triangle from A into two parts, one part that lies inside the
boundary of B that should be discarded and the other part that lies
outside of this boundary and should be retained (See Figure 5,
middle).  The vertices of the retained portions of the triangle are
passed to a constrained triangulation routine that returns a set of
triangles that incorporates all the necessary vertices (Figure 5, right).

The only modification needed to extend this clipping step to
3-space is to determine precisely how to find the points of intersec-
tion Q.  In 3-space the edges of mesh A might very well pass above
or below the boundary of B instead of exactly intersecting the
boundary.  To correct for this we “thicken” the boundary of mesh B.
In essence we create a wall that runs around the boundary of B and
that is roughly perpendicular to B at any given location along the
boundary.  The portion of the wall at any given edge E is a collection
of four triangles, as shown in Figure 6.  To find the intersection points
with the edges of A, we only need to note where these edges pass
through the wall of triangles.  We then move this intersection point
down to the nearest position on the edge E to which the intersected
portion of the wall belongs.  The rest of the clipping can proceed as
described above.

5.3 Removing Small Triangles
The clipping process can introduce arbitrarily small or thin

triangles into a mesh.  For many applications this does matter, but in
situations where such triangles are undesirable they can easily be
removed.  We use vertex deletion to remove small triangles: if any of
a triangle’s altitudes fall below a user-specified threshold we delete
one of the triangle’s vertices and all the triangles that shared this
vertex.  We then use constrained triangulation to fill the hole that is
left by deleting these triangles (see [Bern 92]).  We preferentially
delete vertices that were introduced as new vertices during the
clipping process.  If all of a triangle’s vertices are original range
points then the vertex opposite the longest side is deleted.

Figure 5:  Mesh A is clipped against the boundary of mesh B.
Circles (left) show intersection between edges of A and B’s
boundary.  Portions of triangles from A are discarded (middle)
and then both meshes incorporate the points of intersection
(right).
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5.4  False Edge Extension
As described in Section 3.2, range points from a structured light

scanner that are near an object’s silhouette are extended and curled
away from the true geometry.  These extended edges typically occur
at corners.  If there is at least one scan that spans both sides of the
corner, then our method will correctly reconstruct the surface at the
corner.  Since we lower the confidence of a surface near the mesh
boundaries, triangles at the false edge extensions will be eliminated
during redundant surface removal because there are nearby triangles
with higher confidence in the scan that spans the corner.  For correct
integration at a corner, it is the user’s responsibility to provide a scan
that spans both sides of the corner.  Figure 7 illustrates correct
integration at a corner in the presence of false edge extension.
Unfortunately, no disambiguating scan can be found when an object
is highly curved such as a thin cylinder.

Although the problem of false edge extension is discussed in the
structured light literature [Businski 92], we know of no paper on
surface integration from such range images that addresses or even
mentions this issue.  We are also unaware of any other integration
methods that will correctly determine the geometry of a surface at
locations where there are false extensions.  Our group has developed

a method of reducing false edge extensions when creating the range
images (to appear in a forthcoming paper) and we are exploring
algorithms that will lessen the effect of such errors during integra-
tion.  It is our hope that by emphasizing this issue we will encourage
others to address this topic in future research on range image
integration.

6  Consensus Geometry
When we have zippered the meshes of all the range images

together, the resulting triangle mesh captures the topology of the
scanned object.  This mesh may be sufficient for some applications.
If surface detail is important, however, we need to fine-tune the
geometry of the mesh.

The final model of an object should incorporate all the informa-
tion available about surface detail from each range image of the
object.  Some of this information may have been discarded when we
removed redundant triangles during mesh zippering.  We re-introduce
the information about surface detail by moving each vertex of our
zippered mesh to a consensus position given by a weighted average
of positions from the original range images.  Vertices are moved only
in the direction of the surface normal so that features are not blurred
by lateral motion.  This is in contrast to unstructured techniques
which tend to blur small features isotropically.  Our preference for
averaging only in the direction of the surface normal is based on the
observation that most points in range scans are generally accurately
placed with respect to other points in the same scan, but may differ
between scans due to alignment errors such as uncorrected optical
distortion in the camera.  Let  M

1
, M

2
,..., M

n
 refer to the original

triangle meshes created from the range images.  Then the three steps
for finding the consensus surface are:

1) Find a local approximation to the surface normal.
2) Intersect a line oriented along this normal with each original

range image.
3) Form a weighted average of the points of intersection.

Surface of
Triangle Mesh

Wall to 
thicken
mesh 
boundary

Mesh boundary

Figure 6:  Thickened boundary for clipping in 3-space.

Figure 7: Left (top and bottom): Meshes created from two range images of a telephone.  Red denotes locations of high confidence
and blue shows low confidence.  Note the low confidence at the edges to account for false edge extensions.  Top middle:  The two
meshes (colored red and white) after alignment.  Bottom middle:  Close-up of aligned meshes that shows a jagged ridge of triangles
that is the false edge extension of the white mesh at a corner.  Top right:  The meshes after redundant surface removal.  Bottom
right:  The meshes after zippering.



Figure 9:  Left:  This model of a telephone handset was created by zippering together meshes from ten range images.  The mesh
consists of more than 160,000 triangles.  Right:  The final positions of the vertices in the mesh have been moved to an average
of nearby positions in the original range images.  We call this the consensus geometry.

Figure 8:  Photograph of a plastic dinosaur model (left) and a polygon mesh created by registering and zippering together 14 range
images that were taken of the model (right).  The mesh consists of more than 360,000 polygons.



We approximate the surface normal N at a given vertex V by
taking an average over all vertex normals from the vertices in all the
meshes M

i
 that fall within a small sphere centered at V.  We then

intersect each of the meshes M
i
 with the line passing through V along

the direction N.  Let P be the set of all intersections that are near V.
We take the consensus position of V to be the average of all the points
in P.  If we have a measure of confidence for positions on a mesh we
use this to weight the average.

7  Results and Discussion
The dinosaur model shown in Figure 8 was created from 14 range

images and contains more than 360,000 triangles.  Our integration
method correctly joined together the meshes at all locations except
on the head where some holes due to false edge extensions were filled
manually.  Such holes should not occur once we eliminate the false
extensions in the range images.  The dinosaur model was assembled
from a larger quantity of range data (measured either in number of
scans or number of range points) than any published model known to
us.  Naturally, we plan to explore the use of automatic simplification
methods with our models [Schroeder 92] [Turk 92] [Hoppe 93].
Figure 9 shows a model of a phone that was created from ten range
images and contains over 160,000 triangles.  The mesh on the right
demonstrates that the consensus geometry both reduces noise from
the range images without blurring the model’s features and also that
it eliminates discontinuities at zippered regions.

A key factor that distinguishes our approach from those using
unstructured integration ([Hoppe 92] and others) is that our method
attempts to retain as much of the triangle connectivity as is possible
from the meshes created from the original range images.  Our
integration process concentrates on a one-dimensional portion of the
mesh (the boundary) instead of across an entire two-dimensional
surface, and this makes for rapid integration.

Our algorithm shares several characteristics with the approach of
Soucy and Laurendeau, which is also a structured integration method
[Soucy 92].  The most important difference is the order in which the
two methods perform integration and geometry averaging.  Soucy’s
method first creates the final vertex positions by averaging between
range images and then stitches together the common surface sets.  By
determining geometry before connectivity, their approach may be
sensitive to artifacts of the stitching process.  This is particularly
undesirable because their method can create seams between as many
as 2n common surface sets from n range images.  Such artifacts are
minimized in our approach by performing geometry averaging after
zippering.

In summary, we use zippering of triangle meshes followed by
refinement of surface geometry to build detailed models from range
scans.  We expect that in the near future range image technology will
replace manual digitization of models in several application areas.

8  Future Work
There are several open problems related to integration of multiple

range images.  One issue is how an algorithm might automatically
determine the next best view to capture more of an object’s surface.
Another important issue is merging reflectance information (includ-
ing color) with the geometry of an object.  Maybe the biggest
outstanding issue is how to create higher-order surface descriptions
such as Bezier patches or NURBS from range data, perhaps guided
by a polygon model.
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Abstract

The standard methods for extracting range data from optical trian-
gulation scanners are accurate only for planar objects of uniform
reflectance illuminated by an incoherent source. Using these meth-
ods, curved surfaces, discontinuous surfaces, and surfaces of vary-
ing reflectance cause systematic distortions of the range data. Co-
herent light sources such as lasers introduce speckle artifacts that
further degrade the data. We present a new ranging method based
on analyzing the time evolution of the structured light reflections.
Using our spacetime analysis, we can correct for each of these arti-
facts, thereby attaining significantly higher accuracy using existing
technology. We present results that demonstrate the validity of our
method using a commercial laser stripe triangulation scanner.

1 Introduction

Active optical triangulation is one of the most common methods
for acquiring range data. Although this technology has been in use
for over twenty years, its speed and accuracy has increased dramat-
ically in recent years with the development of geometrically sta-
ble imaging sensors such as CCD's and lateral effect photodiodes.
The range acquisition literature contains many descriptions of op-
tical triangulation range scanners, of which we list a handful [2]
[8] [10] [12] [14] [17] . The variety of methods differ primarily in
the structure of the illuminant (typically point, stripe, multi-point,
or multi-stripe), the dimensionality of the sensor (linear array or
CCD grid), and the scanning method (move the object or move the
scanner hardware).

Figure 1 shows a typical system configuration in two dimen-
sions. The location of the center of the reflected light pulse imaged
on the sensor corresponds to a line of sight that intersects the illu-
minant in exactly one point, yielding a depth value. The shape of
the object is acquired by translating or rotating the object through
the beam or by scanning the beam across the object.

The accuracy of optical triangulation methods hinges on the
ability to locate the “center” of the imaged pulse at each time step.
For optical triangulation systems that extract range from single im-
aged pulses at a time, variations in surface reflectance and shape
result in systematic range errors. Several researchers have observed
one or both of these accuracy limitations [4] [12] [16]. For the
case of coherent illumination, the images of reflections from rough
surfaces are also subject to laser speckle noise, introducing noise
into the range data. Researchers have studied the effect of speckle
on range determination and have indicated that it is a fundamental
limit to the accuracy of laser range triangulation, though its effects
can be reduced with well-known speckle reduction techniques [1]
[5]. Mundy and Porter [12] attempt to correct for variations in sur-
face reflectance by noting that two imaged pulses, differing in posi-
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Figure 1: Optical triangulation geometry. The angle� is the trian-
gulation angle while� is the tilt of the sensor plane needed to keep
the laser plane in focus.

tion or wavelength are sufficient to overcome the reflectance errors,
though some restrictive assumptions are necessary for the case of
differing wavelengths. Kanade, et al, [11] describe a rangefinder
that finds peaks in time for a stationary sensor with pixels that view
fixed points on an object. This method of peak detection is very
similar to the one presented in this paper for solving some of the
problems of optical triangulation; however, the authors in [11] do
not indicate that their design solves or even addresses these prob-
lems. Further, we show that the principle generalizes to other scan-
ning geometries.

In the following sections, we first show how range errors arise
with traditional triangulation techniques. In section 3, we show that
by analyzing the time evolution of structured light reflections, a
process we call spacetime analysis, we can overcome the accuracy
limitations caused by shape and reflectance variations. Experimen-
tal evidence also indicates that laser speckle behaves in a manner
that allows us to reduce its distorting effect as well.

In sections 4 and 5, we describe our hardware and software im-
plementation of the spacetime analysis using a commercial scanner
and a video digitizer, and we demonstrate a significant improve-
ment in range accuracy. Finally, in section 6, we conclude and de-
scribe future directions.

2 Error in triangulation systems

For optical triangulation systems, the accuracy of the range data
depends on proper interpretation of imaged light reflections. The
most common approach is to reduce the problem to one of finding
the “center” of a one dimensional pulse, where the “center” refers
to the position on the sensor which hopefully maps to the center of
the illuminant. Typically, researchers have opted for a statistic such
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Figure 2: Range errors using traditional triangulation methods. (a) Reflectance discontinuity. (b) Corner. (c) Shape discontinuity with respect
to the illumination. (d) Sensor occlusion.

as mean, median or peak of the imaged light as representative of
the center. These statistics give the correct answer when the surface
is perfectly planar, but they are generally inaccurate whenever the
surface perturbs the shape of the illuminant.

2.1 Geometric intuition

Perturbations of the shape of the imaged illuminant occur when-
ever:

� The surface reflectance varies.

� The surface geometry deviates from planarity.

� The light paths to the sensor are partially occluded.

� The surface is sufficiently rough to cause laser speckle.

In Figure 2, we give examples of how the first three circumstances
result in range errors even for an ideal triangulation system with
infinite sensor resolution and perfect calibration. For purposes of
illustration, we omit the imaging optics of Figure 1 and treat the
sensor as a one dimensional orthographic sensor. Further, we as-
sume an illuminant of Gaussian cross-section, and we use the mean
for determining the center of an imaged pulse. Figure 2a shows
how a step reflectance discontinuity results in range points that do
not lie on the surface. Figure 2b and 2c provide two examples of
shape variations resulting in range errors. Note that in Figure 2c,
the center of the illuminant is not even striking a surface. In this
case, a measure of the center of the pulse results in a range value,
when in fact the correct answer is to return no range value what-
ever. Finally, Figure 2d shows the effect of occluding the line of
sight between the illuminated surface and the sensor. This range
error is very similar to the error encountered in Figure 2c.

The fourth source of range error is laser speckle, which arises
when coherent laser illumination bounces off of a surface that is
rough compared to a wavelength [7]. The surface roughness intro-
duces random variations in optical path lengths, causing a random
interference pattern throughout space and at the sensor. The result
is an imaged pulse with a noise component that affects the mean
pulse detection, causing range errors even from a planar target.

2.2 Quantifying the error

To quantify the errors inherent in using mean pulse analysis, we
have computed the errors introduced by reflectance and shape vari-
ations for an ideal triangulation system with a single Gaussian il-
luminant. We take the beam width,w, to be the distance between

the beam center and thee�2 point of the irradiance profile, a con-
vention common to the optics literature. We present the range er-
rors in a scale invariant form by dividing all distances by the beam
width. Figure 3 illustrates the maximum deviation from planarity
introduced by scanning reflectance discontinuities of varying step
magnitudes for varying triangulation angles. As the size of the step
increases, the error increases correspondingly. In addition, smaller
triangulation angles, which are desirable for reducing the likelihood
of missing data due to sensor occlusions, actually result in larger
range errors. This result is not surprising, as sensor mean posi-
tions are converted to depths through a division bysin�, where� is
the triangulation angle, so that errors in mean detection translate to
larger range errors for smaller triangulation angles.

Figure 4 shows the effects of a corner on range error, where
the error is taken to be the shortest distance between the computed
range data and the exact corner point. The corner is oriented so that
the illumination direction bisects the corner's angle as shown in Fig-
ure 2b. As we might expect, a sharper corner results in greater com-
pression of the left side of the imaged Gaussian relative to the right
side, pushing the mean further to the right on the sensor and push-
ing the triangulated point further behind the corner. In this case, the
triangulation angle has little effect as the division bysin� is offset
almost exactly by the smaller observed left/right pulse compression
imbalance.

One possible strategy for reducing these errors would be to de-
crease the width of the beam and increase the resolution of the sen-
sor. However, diffraction limits prevent us from focusing the beam
to an arbitrary width. The limits on focusing a Gaussian beam with
spherical lenses are well known [15]. In recent years, Bickel, et
al, [3] have explored the use of axicons (e.g., glass cones and other
surfaces of revolution) to attain tighter focus of a Gaussian beam.
The refracted beam, however, has a zeroth order Bessel function
cross-section; i.e., it has numerous side-lobes of non-negligible ir-
radiance. The influence of these side-lobes is not well-documented
and would seem to complicate triangulation.

3 A New Method: Spacetime Analysis

The previous section clearly demonstrates that analyzing each im-
aged pulse using a low order statistic leads to systematic range er-
rors. We have found that these errors can be reduced or eliminated
by analyzing the time evolution of the pulses.

3.1 Geometric intuition

Figure 5 illustrates the principle of spacetime analysis for a laser tri-
angulation scanner with Gaussian illuminant and orthographic sen-
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Figure 4: Plot of errors due to corners.

sor as it translates across the edge of an object. As the scanner steps
to the right, the sensor images a smaller and smaller portion of the
laser cross-section. By timet3, the sensor no longer images the cen-
ter of the illuminant, and conventional methods of range estimation
fail. However, if we look along the lines of sight from the corner to
the laser and from the corner to the sensor, we see that the profile
of the laser is being imagedover timeonto the sensor (indicated by
the dotted Gaussian envelope). Thus, we can find the coordinates
of the corner point(xc; zc) by searching for the mean of a Gaus-
sian along a constant line of sight through the sensor images. We
can express the coordinates of this mean as a time and a position on
the sensor, where the time is in general between sensor frames and
the position is between sensor pixels. The position on the sensor
indicates a depth, and the time indicates the lateral position of the
center of the illuminant. In the example of Figure 5, we find that the
spacetime Gaussian corresponding to the exact corner has its mean
at positionsc on the sensor at a timetc betweent2 andt3 during
the scan. We extract the corner's depth by triangulating the center
of the illuminant with the line of sight corresponding to the sensor
coordinatesc, while the corner's horizontal position is proportional
to the timetc.

3.2 A complete derivation

For a more rigorous analysis, we consider the time evolution of
the irradiance from a translating differential surface element,�O,
as recorded at the sensor. We refer the reader to Figure 6 for a de-
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Figure 5: Spacetime mapping of a Gaussian illuminant. As the light
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scription of coordinate systems; note that in contrast to the previous
section, the surface element is translating instead of the illuminant-
sensor assembly. The element has a normaln̂ and an initial position
~po and is translating with velocity~v, so that:

~p(t) = ~po + t~v (1)

Our objective is to compute the coordinates~po = (xo; zo) given
the temporal irradiance variations on the sensor. For simplicity, we
assume that~v = (�v; 0). The illuminant we consider is a laser
with a unidirectional Gaussian radiance profile. We can describe
the total radiance reflected from the element to the sensor as:

L(~p(t); !̂S) = fr(!̂L; !̂S)jn̂ � !̂LjILe
�2(xo�vt)

2

w2 (2)

where fr is the bidirectional reflection distribution function
(BRDF) of the point~po, jn̂ � !̂Lj is the cosine of the angle between
the surface and illumination. The remaining terms describe a point
moving in thex-direction under the Gaussian illuminant of width
w and powerIL.

Projecting the point~p(t) onto the sensor, we find:

s = (xo � vt)cos�� zosin� (3)

wheres is the position on the sensor and� is the angle between the
sensor and laser directions. We combine Equations 2-3 to give us
an equation for the irradiance observed at the sensor as a function
of time and position on the sensor:

ES(t; s) = fr(!̂L; !̂S)jn̂ � !̂LjILe
�2(xo�vt)

2

w2



�(s� (xo � vt)cos� � zosin�) (4)

To simplify this expression, we condense the light reflection terms
into one measure:

� � fr(!̂L; !̂S)jn̂ � !̂Lj (5)

which we will refer to as the reflectance coefficient of point~p for the
given illumination and viewing directions. We also note thatx = vt
is a measure of the relativex-displacement of the point during a
scan, andz = s=sin� is the relation between sensor coordinates
and depth values along the center of the illuminant. Making these
substitutions we have:

ES(x; z) = �ILe
�2(x�xo)

2

w2

�((x� xo)cos� + (z � zo)sin�) (6)

This equation describes a Gaussian running along atilted line
through the spacetime sensor plane or “spacetime image”. We de-
fine the “spacetime image” to be the image whose columns are filled
with sensor scanlines that evolve over time. Through the substi-
tutions above, position within a column of this image represents
displacement in depth, and position within a row represents time
or displacement in lateral position. Figure 7 shows the theoretical
spacetime image of a single point based on the derivation above,
while Figures 8a and 8b shows the spacetime image generated dur-
ing a real scan. From Figure 7, we see that the tilt angle is�� with
respect to thez-axis, and the width of the Gaussian along the line
is:

w0 = w=cos� (7)

The peak value of the Gaussian is�IL, and its mean along the line
is located at(xo; zo), the exact location of the range point. Note
that the angle of the line and the width of the Gaussian are solely
determined by the fixed parameters of the scanner,not the position,
orientation, or BRDF of the surface element.

Thus, extraction of range points should proceed by computing
low order statistics along tilted lines through the sensor spacetime
image, rather than along columns (scanlines) as in the conventional
method. As a result, we can determine the position of the surface
element independently of the orientation and BRDF of the element
and independently of any other nearby surface elements. In the-
ory, the decoupling of range determination from local shape and
reflectance is complete. In practice, optical systems and sensors
have filtering and sampling properties that limit the ability to re-
solve neighboring points. In Figure 8d, for instance, the extracted
edges extend slightly beyond their actual bounds. We attribute this
artifact to filtering which blurs the exact cutoffs of the edges into
neighboring pixels in the spacetime image, causing us to find addi-
tional range values.

As a side effect of the spacetime analysis, the peak of the Gaus-
sian yields the irradiance at the sensor due to the point. Thus, we
automatically obtain an intensity image precisely registered to the
range image.

3.3 Generalizing the geometry

We can easily generalize the previous results to other scanner ge-
ometries under the following conditions:

� The illuminant direction is constant over the path of each
range point.

� The sensor is orthographic.

� The motion is purely translational.
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Figure 7: Spacetime image of a point passing through a Gaussian
illuminant.

These conditions ensure that the reflectance coefficient,� =
fr(!̂L; !̂S)jn̂ � !̂Lj, is constant. Note that the illumination need
only be directional; coherent or incoherent light of any pattern is ac-
ceptable. Further, the translational motion need not be of constant
speed, only constant direction; we can correct for known variations
in speed by applying a suitable warp to the spacetime image.

We can weaken each of these restrictions if� does not vary ap-
preciably for each point as it passes through the illuminant. A per-
spective sensor is suitable if the changes in viewing directions are
relatively small for neighboring points inside the illuminant. This
assumption of “local orthography” has yielded excellent results in
practice. In addition, we can tolerate a rotational component to the
motion as long as the radius of curvature of the point path is large
relative to the beam width, again minimizing the effects on�.

3.4 Correcting laser speckle

The discussion in sections 3.1-3.3 show how we can go about ex-
tracting accurate range data in the presence of shape and reflectance
variations, as well as occlusions. But what about laser speckle?
Empirical observation of the time evolution of the speckle pattern
with our optical triangulation scanner strongly suggests that the im-
age of laser speckle moves as the surface moves. The streaks in
the spacetime image of Figure 8b correspond to speckle noise, for
the object has uniform reflectance and should result in a spacetime
image with uniform peak amplitudes. These streaks are tilted pre-
cisely along the direction of the spacetime analysis, indicating that
the speckle noise adheres to the surface of the object and behaves
as a noisy reflectance variation. Other researchers have observed
a “stationary speckle” phenomenon as well [1]. Proper analysis
of this problem is an open question, likely to be resolved with
the study of the governing equations of scalar diffraction theory
for imaging of a rough translating surface under coherent Gaussian
beam illumination [6].

4 Implementation

We have implemented the spacetime analysis presented in the pre-
vious section using a commercial laser triangulation scanner and a
real-time digital video recorder.

4.1 Hardware

The optical triangulation system we use is a Cyberware MS plat-
form scanner. This scanner collects range data by casting a laser
stripe on the object and by observing reflections with a CCD cam-
era positioned at an angle of30o with respect to the plane of the



(a)
(b) (c) (d)

TA SA

Illuminant

Sensor

Figure 8: From geometry to spacetime image to range data. (a) The original geometry. (b) The resulting spacetime image. TA indicates the
direction of traditional analysis, while SA is the direction of the spacetime analysis. The dotted line corresponds to the scanline generated at
the instant shown in (a). (c) Range data after traditional mean analysis. (d) Range data after spacetime analysis.

laser. The platform can either translate or rotate an object through
the field of view of the triangulation optics. The laser width varies
from 0.8 mm to 1.0 mm over the field of view which is approxi-
mately 30 cm in depth and 30 cm in height. Each CCD pixel images
a portion of the laser plane roughly 0.5 mm by 0.5 mm. Although
the Cyberware scanner performs a form of peak detection in real
time, we require the actual video frames of the camera for our anal-
ysis. We capture these frames with an Abekas A20 video digitizer
and an Abekas A60 digital video disk, a system that can acquire 486
by 720 size frames at 30 Hz. These captured frames have approxi-
mately the same resolution as the Cyberware range camera, though
they represent a resampling of the reconstructed CCD output.

4.2 Algorithms

Using the principles of section 3, we can devise a procedure for
extracting range data from spacetime images:

1. Perform the range scan and capture the spacetime images.

2. Rotate the spacetime images by��.

3. Find the statistics of the Gaussians in the rotated coordinates.

4. Rotate the means back to the original coordinates.

In order to implement step 1 of this algorithm, we require a se-
quence of CCD images. Most commercial optical triangulation sys-
tems discard each CCD image after using it (e.g. to compute a stripe
of the range map). As described in section 4.1, we have assembled
the necessary hardware to record the CCD frames. In section 3,
we discussed a one dimensional sensor scenario and indicated that
perspective imaging could be treated as locally orthographic. For
a two dimensional sensor, we can imagine the horizontal scanlines
as separate one dimensional sensors with varying vertical (y) off-
sets. Each scanline generates a spacetime image, and by stacking
the spacetime images one atop another, we define a spacetimevol-
ume. In general, we must perform our analysis along the paths of
points, paths which may cross scanlines within the spacetime vol-
ume. However, we have observed for our system that the illuminant
is sufficiently narrow and the perspective of the range camera suf-
ficiently weak, that these paths essentially remain within scanlines.
This observation allows us to perform our analysis on each space-
time image separately.

In step 2, we rotate the spacetime images so that Gaussians are
vertically aligned. In a practical system with different sampling
rates inx andz, the correct rotation angle can be computed as:

tan� =
�z
�x

tan�T (8)

where� is the new rotation angle,�x and�z are the sample spacing
in x andz respectively, and�T is the triangulation angle. In order to
determine the rotation angle,�, for a given scanning rate and region
of the field of view of our Cyberware scanner, we first determined
the local triangulation angle and the sample spacings in depth (z)
and lateral position (x). Equation 8 then yields the desired angle.

In step 3, we compute the statistics of the Gaussians along each
rotated spacetime image raster. Our method of choice for comput-
ing these statistics is a least squares fit of a parabola to the log of
the data. We have experimented with fitting the data directly to
Gaussians using the Levenberg-Marquardt non-linear least squares
algorithm [13], but the results have been substantially the same as
the log-parabola fits. The Gaussian statistics consist of a mean,
which corresponds to a range point, as well as a width and a peak
amplitude, both of which indicate the reliability of the data. Widths
that are far from the expected width and peak amplitudes near the
noise floor of the sensor imply unreliable data which may be down-
weighted or discarded during later processing (e.g., when combin-
ing multiple range meshes [18]). For the purposes of this paper, we
discard unreliable data.

Finally, in step 4, we rotate the range points back into the global
coordinate system.

Traditionally, researchers have extracted range data at sampling
rates corresponding to one range point per sensor scanline per unit
time. Interpolation of shape between range points has consisted of
fitting primitives (e.g., linear interpolants like triangles) to the range
points. Instead, we can regard the spacetime volume as the primary
source of information we have about an object. After performing a
real scan, we have a sampled representation of the spacetime vol-
ume, which we can then reconstruct to generate a continuous func-
tion. This function then acts as our range oracle, which we can
query for range data at a sampling rate of our choosing. In practice,
we can magnify the sampled spacetime volume prior to applying
the range imaging steps described above. The result is a range grid
with a higher sampling density based directly on the imaged light
reflections.

5 Results

5.1 Reflectance correction

To evaluate the tolerance of the spacetime method to changes in
reflectance, we performed two experiments, one quantitative and
the other qualitative. For the first experiment, we generated pla-
nar cards with step reflectance changes varying from about 1:1 to
10:1 and scanned them at an angle of30o (roughly facing the sen-
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Figure 9: Measured error due to varying reflectance steps.

(a)

(b)

(c)

Figure 10: Reflectance card. (a) Photograph of a planar card with
the word “Reflectance” printed on it, and shaded renderings of the
range data generated by (b) mean pulse analysis and (c) spacetime
analysis.

sor). Figure 9 shows a plot of maximum deviations from planarity
when using traditional per scanline mean analysis and our space-
time analysis. The spacetime method has clearly improved over the
old method, yielding up to 85% reductions in range errors.

For qualitative comparison, we produced a planar sheet with the
word “Reflectance” printed on it. Figure 10 shows the results. The
old method yields a surface with the characters well-embossed into
the geometry, whereas the spacetime method yields a much more
planar surface indicating successful decoupling of geometry and
reflectance.

5.2 Shape correction

We conducted several experiments to evaluate the effects of shape
variation on range acquisition. In the first experiment, we generated
corners of varying angles by abutting sharp edges of machined alu-
minum wedges which are painted white. Figure 11 shows the range
errors that result for traditional and spacetime methods. Again, we
see an increase in accuracy, though not as great as in the reflectance
case.

We also scanned two 4 mm strips of paper at an angle of30o

(roughly facing the sensor) to examine the effects of depth con-
tinuity. Figure 12b shows the “edge curl” observed with the old
method, while the spacetime method in Figure 12c shows a signif-
icant reduction of this artifact under spacetime analysis. We have
found that the spacetime method reduces the length of the edge curl
from an average of 1.1 mm to an average of approximately 0.35
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Figure 11: Measured error due to corners of varying angles.

(a) (b) (c)

Figure 12: Depth discontinuities and edge curl. (a) Photograph of
two strips of paper, and shaded renderings of the range data gen-
erated by (b) mean pulse analysis and (c) spacetime analysis. The
“edge curl” indicated by the hash-marks in (b) is 1.1mm.

mm.

Finally, we impressed the word “shape” onto a plastic ribbon us-
ing a commonly available label maker. In Figure 10, we wanted the
word “Reflectance” to disappear because it represented changes in
reflectance rather than in geometry. In Figure 13, we want the word
“Shape” to stay because it represents real geometry. Furthermore,
we wish to resolve it as highly as possible. Figure 13 shows the
result. Using the scanline mean method, the word is barely visible.
Using the new spacetime analysis, the word becomes legible.

(a)

(b)

(c)

Figure 13: Shape ribbon. (a) Photograph of a surface with raised
lettering (letters are approx. 0.3 mm high), and renderings of the
range data generated by (b) mean pulse analysis and (c) spacetime
analysis.



5.3 Speckle reduction

We performed range scans on the planar surfaces and generated
range points using the traditional and spacetime methods. After fit-
ting planes to range points, we found a 30-60% reduction in average
deviation from planarity when using the spacetime analysis.

5.4 A complex object

Figure 14 shows the results of scanning a model tractor. Figure 14b
is a rendering of the data generated by the Cyberware scanner hard-
ware and is particularly noisy. This added noisiness results from
the method of pulse analysis performed by the hardware, a method
similar to peak detection. Peak detection is especially susceptible
to speckle noise, because it extracts a range point based on a single
value or small neighborhood of values on a noisy curve. Mean anal-
ysis tends to average out the speckle noise, resulting in smoother
range data as shown in Figure 14c. Figure 14d shows our space-
time results and Figure 14e shows the spacetime results with 3X
interpolation and resampling of the spacetime volume as described
in section 4.2. Note the sharper definition of features on the body of
the tractor and less jagged edges in regions of depth discontinuity.

5.5 Remaining sources of error

The results we presented in this section clearly show that the space-
time analysis yields more accurate range data, but the results are
imperfect due to system limitations. These limitations include:

� CCD noise

� Finite sensor resolution

� Optical blurring and electronic filtering

� Quantization errors

� Calibration errors

� Surface-surface inter-reflections

In addition, we observed some electronic artifacts in our Cyber-
ware scanner that influenced our results. We expect, however, that
any measures taken to reduce the effects of the limiting factors de-
scribed above will lead to higher accuracy. By contrast, if one uses
traditional methods of range extraction, then increasing sensor res-
olution and reducing the effects of filtering alone willnot signif-
icantly increase tolerance to reflectance and shape changes when
applying the traditional methods of range extraction.

6 Conclusion

We have described several of the systematic limitations in tradi-
tional methods of range acquisition with optical triangulation range
scanners, including intolerance to reflectance and shape changes
and speckle noise. By analyzing the time evolution of the reflected
light imaged onto the sensor, we have shown that distortions in-
duced by shape and reflectance changes can be corrected, while
the influence of laser speckle can be reduced. In practice, we
have demonstrated that we can significantly reduce range distor-
tions with existing hardware. Although the spacetime method does
not completely eliminate range artifacts in practice, it has proven to
reduce the artifacts in all experiments we have conducted.

In future work, we plan to incorporate the improved range data
with algorithms that integrate partial triangulation scans into com-
plete, unified meshes. We expect this improved data to ease the

process of estimating topology, especially in areas of high curva-
ture which are prone to edge curl artifacts. We will also investigate
methods for increasing the resolution of the existing hardware by
registering and deblurring multiple spacetime images [9]. Finally,
we hope to apply the results of scalar diffraction theory to put the
achievement of speckle reduction on sound theoretical footing.
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A Volumetric Method for Building Complex Models from Range Images

Brian Curless and Marc Levoy
Stanford University

Abstract
A number of techniques have been developed for reconstructing sur-
faces by integrating groups of aligned range images. A desirable set
of properties for such algorithms includes: incremental updating, rep-
resentation of directional uncertainty, the ability to fill gaps in the re-
construction, and robustness in the presence of outliers. Prior algo-
rithms possess subsets of these properties. In this paper, we present a
volumetric method for integrating range images that possesses all of
these properties.

Our volumetric representation consists of a cumulative weighted
signed distance function. Working with one range image at a time,
we first scan-convert it to a distance function, then combine this with
the data already acquired using a simple additive scheme. To achieve
space efficiency, we employ a run-length encoding of the volume. To
achieve time efficiency, we resample the range image to align with the
voxel grid and traverse the range and voxel scanlines synchronously.
We generate the final manifold by extracting an isosurface from the
volumetric grid. We show that under certain assumptions, this isosur-
face is optimal in the least squares sense. To fill gaps in the model, we
tessellate over the boundaries between regions seen to be empty and
regions never observed.

Using this method, we are able to integrate a large number of range
images (as many as 70) yielding seamless, high-detail models of up to
2.6 million triangles.

CR Categories: I.3.5 [Computer Graphics] Computational Geome-
try and Object Modeling
Additional keywords: Surface fitting, three-dimensional shape re-
covery, range image integration, isosurface extraction

1 Introduction
Recent years have witnessed a rise in the availability of fast, accurate
range scanners. These range scanners have provided data for applica-
tions such as medicine, reverse engineering, and digital film-making.
Many of these devicesgenerate range images; i.e., they produce depth
values on a regular sampling lattice. Figure 1 illustrates how an op-
tical triangulation scanner can be used to acquire a range image. By
connecting nearest neighbors with triangular elements, one can con-
struct a range surface as shown in Figure 1d. Range images are typi-
cally formed by sweeping a 1D or 2D sensor linearly across an object
or circularly around it, and generally do not contain enough informa-
tion to reconstruct the entire object being scanned. Accordingly, we
require algorithms that can merge multiple range images into a sin-
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gle description of the surface. A set of desirable properties for such a
surface reconstruction algorithm includes:

� Representation of range uncertainty. The data in range images
typically have asymmetric error distributions with primary di-
rections along sensor lines of sight, as illustrated for optical tri-
angulation in Figure 1a. The method of range integration should
reflect this fact.

� Utilization of all range data, including redundant observations
of each object surface. If properly used, this redundancy can re-
duce sensor noise.

� Incremental and order independent updating. Incremental up-
dates allow us to obtain a reconstruction after each scan or small
set of scans and allow us to choose the next best orientation for
scanning. Order independence is desirable to ensure that results
are not biased by earlier scans. Together, they allow for straight-
forward parallelization.

� Time and space efficiency. Complex objects may require many
range images in order to build a detailed model. The range
images and the model must be represented efficiently and pro-
cessed quickly to make the algorithm practical.

� Robustness. Outliers and systematic range distortions can create
challenging situations for reconstruction algorithms. A robust
algorithm needs to handle these situations without catastrophic
failures such as holes in surfaces and self-intersecting surfaces.

� No restrictions on topological type. The algorithm should not
assume that the object is of a particular genus. Simplifying as-
sumptions such as “the object is homeomorphic to a sphere”
yield useful results in only a restricted class of problems.

� Ability to fill holes in the reconstruction. Given a set of range
images that do not completely cover the object, the surface re-
construction will necessarily be incomplete. For some objects,
no amount of scanning would completely cover the object, be-
cause some surfaces may be inaccessible to the sensor. In these
cases, we desire an algorithm that can automatically fill these
holes with plausible surfaces, yielding a model that is both “wa-
tertight” and esthetically pleasing.

In this paper, we present a volumetric method for integrating range
images that possesses all of these properties. In the next section, we
review some previous work in the area of surface reconstruction. In
section 3, we describe the core of our volumetric algorithm. In sec-
tion 4, we show how this algorithm can be used to fill gaps in the re-
construction using knowledge about the emptiness of space. Next, in
section 5, we describe how we implemented our volumetric approach
so as to keep time and space costs reasonable. In section 6, we show
the results of surface reconstruction from many range images of com-
plex objects. Finally, in section 7 we conclude and discuss limitations
and future directions.

2 Previous work
Surface reconstruction from dense range data has been an active area
of research for several decades. The strategies have proceeded along
two basic directions: reconstruction from unorganized points, and
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Figure 1. From optical triangulation to a range surface. (a) In 2D, a narrow laser beam illuminates a surface, and a linear sensor images the reflection from an
object. The center of the image pulse maps to the center of the laser, yielding a range value. The uncertainty,�x , in determining the center of the pulse results
in range uncertainty, �z along the laser’s line of sight. When using the spacetime analysis for optical triangulation [6], the uncertainties run along the lines of
sight of the CCD. (b) In 3D, a laser stripe triangulation scanner first spreads the laser beam into a sheet of light with a cylindrical lens. The CCD observes the
reflected stripe from which a depth profile is computed. The object sweeps through the field of view, yielding a range image. Other scanner configurations rotate
the object to obtain a cylindrical scan or sweep a laser beam or stripe over a stationary object. (c) A range image obtained from the scanner in (b) is a collection
of points with regular spacing. (d) By connecting nearest neighbors with triangles, we create a piecewise linear range surface.

reconstruction that exploits the underlying structure of the acquired
data. These two strategies can be further subdivided according to
whether they operate by reconstructing parametric surfaces or by re-
constructing an implicit function.

A major advantage of the unorganized points algorithms is the fact
that they do not make any prior assumptions about connectivity of
points. In the absence of range images or contours to provide connec-
tivity cues, these algorithms are the only recourse. Among the para-
metric surface approaches, Boissanat [2] describes a method for De-
launay triangulation of a set of points in 3-space. Edelsbrunner and
Mücke [9] generalize the notion of a convex hull to create surfaces
called alpha-shapes. Examples of implicit surface reconstruction in-
clude the method of Hoppe, et al [16] for generating a signed distance
function followed by an isosurface extraction. More recently, Bajaj,
et al [1] used alpha-shapes to construct a signed distance function to
which they fit implicit polynomials. Although unorganized points al-
gorithms are widely applicable, they discard useful information such
as surface normal and reliability estimates. As a result, these algo-
rithms are well-behaved in smooth regions of surfaces, but they are
not always robust in regions of high curvature and in the presence of
systematic range distortions and outliers.

Among the structured data algorithms, several parametric ap-
proaches have been proposed, most of them operating on range im-
ages in a polygonal domain. Soucy and Laurendeau [25] describe
a method using Venn diagrams to identify overlapping data regions,
followed by re-parameterization and merging of regions. Turk and
Levoy [30] devised an incremental algorithm that updates a recon-
struction by eroding redundantgeometry, followed by zippering along
the remaining boundaries, and finally a consensus step that rein-
troduces the original geometry to establish final vertex positions.
Rutishauser, et al [24] use errors along the sensor’s lines of sight to es-
tablish consensus surface positions followed by a re-tessellation that
incorporates redundant data. These algorithms typically perform bet-
ter than unorganized point algorithms, but they can still fail catas-
trophically in areas of high curvature, as exemplified in Figure 9.

Several algorithms have been proposed for integrating structured
data to generate implicit functions. These algorithms can be classified
as to whether voxels are assigned one of two (or three) states or are
samples of a continuous function. Among the discrete-state volumet-
ric algorithms, Connolly [4] casts rays from a range image accessedas
a quad-tree into a voxel grid stored as an octree, and generates results
for synthetic data. Chien, et al [3] efficiently generate octree models
under the severe assumption that all views are taken from the direc-
tions corresponding to the 6 faces of a cube. Li and Crebbin [19] and

Tarbox and Gottschlich [28] also describe methods for generating bi-
nary voxel grids from range images. None of these methods has been
used to generate surfaces. Further, without an underlying continuous
function, there are no mechanism for representing range uncertainty
or for combining overlapping, noisy range surfaces.

The last category of our taxonomy consists of implicit function
methods that use samples of a continuous function to combine struc-
tured data. Our method falls into this category. Previous efforts in this
area include the work of Grosso, et al [12], who generate depth maps
from stereo and average them into a volume with occupancyramps of
varying slopes corresponding to uncertainty measures; they do not,
however, perform a final surface extraction. Succi, et al [26] create
depth maps from stereo and optical flow and integrate them volumet-
rically using a straight average. The details of his method are unclear,
but they appear to extract an isosurface at an arbitrary threshold. In
both the Grosso and Succi papers, the range maps are sparse, the di-
rections of range uncertainty are not characterized, they use no time
or spaceoptimizations, and the final models are of low resolution. Re-
cently, Hilton, et al [14] have developed a method similar to ours in
that it uses weighted signed distance functions for merging range im-
ages, but it does not address directions of sensor uncertainty, incre-
mental updating, space efficiency, and characterization of the whole
space for potential hole filling, all of which we believe are crucial for
the success of this approach.

Other relevant work includes the method of probabilistic occu-
pancy grids developed by Elfes and Matthies [10]. Their volumetric
space is a scalar probability field which they update using a Bayesian
formulation. The results have been used for robot navigation, but not
for surface extraction. A difficulty with this technique is the fact that
the best description of the surface lies at the peak or ridge of the proba-
bility function, and the problem of ridge-finding is not one with robust
solutions [8]. This is one of our primary motivations for taking an iso-
surface approach in the next section: it leverages off of well-behaved
surface extraction algorithms.

The discrete-state implicit function algorithms described above
also have much in common with the methods of extracting volumes
from silhouettes [15] [21] [23] [27]. The idea of using backdrops to
help carve out the emptiness of space is one we demonstrate in sec-
tion 4.

3 Volumetric integration
Our algorithm employs a continuous implicit function, D(x), repre-
sented by samples. The function we represent is the weighted signed
distance of each point x to the nearest range surface along the line of

2



Sensor

Near Far
x

x

Volume
Range surface

Zero-crossing
(isosurface)

x

x

New zero-crossing

Distance
from

surface

(a) (b)

Figure 2. Unweighted signed distance functions in 3D. (a) A range sen-
sor looking down the x-axis observes a range image, shown here as a re-
constructed range surface. Following one line of sight down the x-axis,
we can generate a signed distance function as shown. The zero crossing
of this function is a point on the range surface. (b) The range sensor re-
peats the measurement, but noise in the range sensing process results in a
slightly different range surface. In general, the second surface would inter-
penetrate the first, but we have shown it as an offset from the first surface
for purposes of illustration. Following the same line of sight as before, we
obtain another signed distance function. By summing these functions, we
arrive at a cumulative function with a new zero crossing positioned mid-
way between the original range measurements.

sight to the sensor. We construct this function by combining signed
distance functions d1(x), d2(x), ... dn(x) and weight functions
w1(x), w2(x), ... wn(x) obtained from range images 1 ... n. Our
combining rules give us for each voxel a cumulative signed distance
function, D(x), and a cumulative weight W (x). We represent these
functions on a discrete voxel grid and extract an isosurface corre-
sponding to D(x) = 0. Under a certain set of assumptions, this iso-
surface is optimal in the least squares sense. A full proof of this op-
timality is beyond the scope of this paper, but a sketch appears in ap-
pendix A.

Figure 2 illustrates the principle of combining unweighted signed
distances for the simple case of two range surfaces sampled from the
same direction. Note that the resulting isosurface would be the sur-
face created by averaging the two range surfaces along the sensor’s
lines of sight. In general, however, weights are necessary to repre-
sent variations in certainty across the range surfaces. The choice of
weights should be specific to the range scanning technology. For op-
tical triangulation scanners, for example, Soucy [25] and Turk [30]
make the weight depend on the dot product between each vertex nor-
mal and the viewing direction, reflecting greater uncertainty when the
illumination is at grazing angles to the surface. Turk also argues that
the range data at the boundaries of the mesh typically have greater
uncertainty, requiring more down-weighting. We adopt these same
weighting schemes for our optical triangulation range data.

Figure 3 illustrates the construction and usage of the signed dis-
tance and weight functions in 1D. In Figure 3a, the sensor is posi-
tioned at the origin looking down the +x axis and has taken two mea-
surements, r1 and r2 . The signed distance profiles, d1(x) and d2(x)
may extend indefinitely in either direction, but the weight functions,
w1(x) and w2(x), taper off behind the range points for reasons dis-
cussed below.

Figure 3b is the weighted combination of the two profiles. The
combination rules are straightforward:

D(x) =
�wi(x)di(x)

�wi(x)
(1)

W (x) = �wi(x) (2)
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Figure 3. Signed distance and weight functions in one dimension. (a) The
sensor looks down the x-axis and takes two measurements, r1 and r2.
d1(x) and d2(x) are the signed distance profiles, and w1(x) and w2(x)
are the weight functions. In 1D, we might expect two sensor measure-
ments to have the same weight magnitudes, but we have shown them to
be of different magnitude here to illustrate how the profiles combine in the
general case. (b) D(x) is a weighted combination of d1(x) and d2(x),
and W (x) is the sum of the weight functions. Given this formulation, the
zero-crossing,R, becomes the weighted combination of r1 and r2 and rep-
resents ourbest guess of the location of the surface. In practice, we truncate
the distance ramps and weights to the vicinity of the range points.

where, di(x) andwi(x) are the signed distance and weight functions
from the ith range image.

Expressed as an incremental calculation, the rules are:

Di+1(x) =
Wi(x)Di(x) + wi+1(x)di+1(x)

Wi(x) +wi+1(x)
(3)

Wi+1(x) = Wi(x) +wi+1(x) (4)

where Di(x) and Wi(x) are the cumulative signed distance and
weight functions after integrating the ith range image.

In the special case of one dimension, the zero-crossing of the cu-
mulative function is at a range, R given by:

R =
�wiri

�wi

(5)

i.e., a weighted combination of the acquired range values, which is
what one would expect for a least squares minimization.

In principle, the distance and weighting functions should extend in-
definitely in either direction. However, to prevent surfaces on oppo-
site sides of the object from interfering with each other, we force the
weighting function to taper off behind the surface. There is a trade-off
involved in choosing where the weight function tapers off. It should
persist far enough behind the surface to ensure that all distance ramps
will contribute in the vicinity of the final zero crossing, but, it should
also be as narrow as possible to avoid influencing surfaces on the other
side. To meet these requirements, we force the weights to fall off at a
distance equal to half the maximum uncertainty interval of the range
measurements. Similarly, the signed distance and weight functions
need not extend far in front of the surface. Restricting the functions
to the vicinity of the surface yields a more compact representation and
reduces the computational expense of updating the volume.

In two and three dimensions, the range measurements correspond
to curves or surfaces with weight functions, and the signed distance
ramps have directions that are consistent with the primary directions
of sensor uncertainty. The uncertainties that apply to range image in-
tegration include errors in alignment between meshes as well as er-
rors inherent in the scanning technology. A number of algorithms for
aligning sets of range images have been explored and shown to yield
excellent results [11][30]. The remaining error lies in the scanner it-
self. For optical triangulation scanners, for example, this error has
been shown to be ellipsoidal about the range points, with the major
axis of the ellipse aligned with the lines of sight of the laser [13][24].

Figure 4 illustrates the two-dimensional case for a range curve de-
rived from a single scan containing a row of range samples. In prac-
tice, we use a fixed point representation for the signed distance func-
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Figure 4. Combination of signed distance and weight functions in two di-
mensions. (a) and (d) are the signed distance and weight functions, respec-
tively, generated for a range image viewed from the sensor line of sight
shown in (d). The signed distance functions are chosen to vary between
Dmin and Dmax , as shown in (a). The weighting falls off with increas-
ing obliquity to the sensorand at the edgesof the meshesas indicated by the
darker regions in (e). The normals,n1 andn2 shown in (e), are oriented at
a grazing angle and facing the sensor, respectively. Note how the weight-
ing is lower (darker) for the grazing normal. (b) and (e) are the signed dis-
tance and weight functions for a range image of the same object taken at a
60 degree rotation. (c) is the signed distance function D(x) correspond-
ing to the per voxel weighted combination of (a) and (b) constructed using
equations 3 and 4. (f) is the sum of the weights at each voxel,W (x). The
dotted green curve in (c) is the isosurface that represents our current esti-
mate of the shape of the object.

tion, which bounds the values to lie between Dmin and Dmax as
shown in the figure. The values ofDmin andDmax must be negative
and positive, respectively, as they are on opposite sides of a signed
distance zero-crossing.

For three dimensions, we can summarize the whole algorithm as
follows. First, we set all voxel weights to zero, so that new data will
overwrite the initial grid values. Next, we tessellate each range im-
age by constructing triangles from nearest neighbors on the sampled
lattice. We avoid tessellating over step discontinuities (cliffs in the
range map) by discarding triangles with edge lengths that exceed a
threshold. We must also compute a weight at each vertex as described
above.

Once a range image has been converted to a triangle mesh with
a weight at each vertex, we can update the voxel grid. The signed
distance contribution is computed by casting a ray from the sensor
through each voxel near the range surface and then intersecting it with
the triangle mesh, as shown in figure 5. The weight is computed by
linearly interpolating the weights stored at the intersection triangle’s
vertices. Having determined the signed distance and weight we can
apply the update formulae described in equations 3 and 4.

At any point during the merging of the range images, we can extract
the zero-crossing isosurface from the volumetric grid. We restrict this
extraction procedure to skip samples with zero weight, generating tri-
angles only in the regions of observed data. We will relax this restric-
tion in the next section.

4 Hole filling
The algorithm described in the previous section is designed to recon-
struct the observed portions of the surface. Unseen portions of the
surface will appear as holes in the reconstruction. While this result
is an accurate representation of the known surface, the holes are es-
thetically unsatisfying and can present a stumbling block to follow-
on algorithms that expect continuous meshes. In [17], for example,
the authors describe a method for parameterizing patches that entails

Volume
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Range surface

wawb
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d

VoxelViewing
ray

Figure 5. Sampling the range surface to update the volume. We compute
the weight, w, and signed distance, d, needed to update the voxel by cast-
ing a ray from the sensor, through the voxel onto the range surface. We
obtain the weight, w, by linearly interpolating the weights (wa , wb, and
wc) stored at neighboring range vertices. Note that for a translating sensor
(like our Cyberware scanner), the sensor point is different for each column
of range points.

generating evenly spaced grid lines by walking across the edges of a
mesh. Gaps in the mesh prevent the algorithm from creating a fair pa-
rameterization. As another example, rapid prototyping technologies
such as stereolithography typically require a “watertight” model in or-
der to construct a solid replica [7].

One option for filling holes is to operate on the reconstructed mesh.
If the regions of the mesh near each hole are very nearly planar, then
this approach works well. However, holes in the meshes can be (and
frequently are) highly non-planar and may even require connections
between unconnectedcomponents. Instead, we offer a hole filling ap-
proach that operates on our volume, which contains more information
than the reconstructed mesh.

The key to our algorithm lies in classifying all points in the vol-
ume as being in one of three states: unseen, empty, or near the surface.
Holes in the surface are indicated by frontiers between unseen regions
and empty regions (see Figure 6). Surfaces placed at these frontiers
offer a plausible way to plug these holes (dotted in Figure 6). Ob-
taining this classification and generating these hole fillers leads to a
straightforward extension of the algorithm described in the previous
section:

1. Initialize the voxel space to the “unseen” state.

2. Update the voxels near the surface as described in the previous
section. As before, these voxels take on continuous signed dis-
tance and weight values.

3. Follow the lines of sight back from the observed surface and
mark the corresponding voxels as “empty”. We refer to this step
as space carving.

4. Perform an isosurface extraction at the zero-crossing of the
signed distance function. Additionally, extract a surface be-
tween regions seen to be empty and regions that remain unseen.

In practice, we represent the unseen and empty states using the
function and weight fields stored on the voxel lattice. We represent the
unseen state with the function valuesD(x) = Dmax ,W (x) = 0 and
the empty state with the function values D(x) = Dmin, W (x) = 0,
as shown in Figure 6b. The key advantage of this representation is
that we can use the same isosurface extraction algorithm we used in
the previous section without the restriction on interpolating voxels of
zero weight. This extraction finds both the signed distance and hole
fill isosurfaces and connects them naturally where they meet, i.e., at
the corners in Figure 6a where the dotted red line meets the dashed
green line. Note that the triangles that arise from interpolations across
voxels of zero weight are distinct from the others: they are hole fillers.
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Figure 6. Volumetric grid with space carving and hole filling. (a) The re-
gions in front of the surface are seen as empty, regions in the vicinity of
the surface ramp through the zero-crossing, while regions behind remain
unseen. The green (dashed) segments are the isosurfaces generated near
the observed surface, while the red (dotted) segments are hole fillers, gen-
erated by tessellating over the transition from empty to unseen. In (b), we
identify the three extremal voxel states with their corresponding function
values.

We take advantage of this distinction when smoothing surfaces as de-
scribed below.

Figure 6 illustrates the method for a single range image, and pro-
vides a diagram for the three-state classification scheme. The hole
filler isosurfaces are “false” in that they are not representative of the
observed surface, but they do derive from observed data. In particular,
they correspond to a boundary that confines where the surface could
plausibly exist. In practice, we find that many of these hole filler sur-
faces are generated in crevices that are hard for the sensor to reach.

Because the transition between unseen and empty is discontinuous
and hole fill triangles are generated as an isosurface between these bi-
nary states, with no smooth transition, we generally observe aliasing
artifacts in these areas. These artifacts can be eliminated by prefilter-
ing the transition region before sampling on the voxel lattice using
straightforward methods such as analytic filtering or super-sampling
and averaging down. In practice, we have obtained satisfactory re-
sults by applying another technique: post-filtering the mesh after re-
construction using weighted averages of nearest vertex neighbors as
described in [29]. The effect of this filtering step is to blur the hole
fill surface. Since we know which triangles correspond to hole fillers,
we need only concentrate the surface filtering on the these portions of
the mesh. This localized filtering preserves the detail in the observed
surface reconstruction. To achieve a smooth blend between filtered
hole fill vertices and the neighboring “real” surface, we allow the fil-
ter weights to extend beyond and taper off into the vicinity of the hole
fill boundaries.

We have just seen how “space carving” is a useful operation: it tells
us much about the structure of free space, allowing us to fill holes in
an intelligent way. However, our algorithm only carves back from ob-
served surfaces. There are numerous situations where more carving
would be useful. For example, the interior walls of a hollow cylinder
may elude digitization, but by seeing through the hollow portion of
the cylinder to a surface placed behind it, we can better approximate
its geometry. We can extend the carving paradigm to cover these situ-
ations by placing such a backdrop behind the surfaces being scanned.
By placing the backdrop outside of the voxel grid, we utilize it purely
for carving space without introducing its geometry into the model.

5 Implementation
5.1 Hardware
The examples in this paper were acquired using a Cyberware 3030
MS laser stripe optical triangulation scanner. Figure 1b illustrates
the scanning geometry: an object translates through a plane of laser

light while the reflections are triangulated into depth profiles through
a CCD camera positioned off axis. To improve the quality of the data,
we apply the method of spacetime analysis as described in [6]. The
benefits of this analysis include reduced range noise, greater immu-
nity to reflectance changes, and less artifacts near range discontinu-
ities.

When using traditional triangulation analysis implemented in hard-
ware in our Cyberware scanner, the uncertainty in triangulation for
our system follows the lines of sight of the expanding laser beam.
When using the spacetime analysis, however, the uncertainty follows
the lines of sight of the camera. The results described in section 6 of
this paper were obtained with one or the other triangulation method.
In each case, we adhere to the appropriate lines of sight when laying
down signed distance and weight functions.

5.2 Software
The creation of detailed, complex models requires a large amount of
input data to be merged into high resolution voxel grids. The exam-
ples in the next section include models generated from as many as 70
scans containing up to 12 million input vertices with volumetric grids
ranging in size up to 160 million voxels. Clearly, time and space opti-
mizations are critical for merging this data and managing these grids.

5.2.1 Run-length encoding
The core data structure is a run-length encoded (RLE) volume with
three run types: empty, unseen, and varying. The varying fields are
stored as a stream of varying data, rather than runs of constant value.
Typical memory savings vary from 10:1 to 20:1. In fact, the space
required to represent one of these voxel grids is usually less than the
memory required to represent the final mesh as a list of vertices and
triangle indices.

5.2.2 Fast volume traversal
Updating the volume from a range image may be likened to inverse
volume rendering: instead of reading from a volume and writing to an
image, we read from a range image and write to a volume. As a re-
sult, we leverage off of a successful idea from the volume rendering
community: for best memory system performance, stream through
the volume and the image simultaneously in scanline order [18]. In
general, however, the scanlines of a range image are not aligned with
the scanlines of the voxel grid, as shown in Figure 7a. By suitably
resampling the range image, we obtain the desired alignment (Fig-
ure 7b). The resampling process consists of a depth rendering of the
range surface using the viewing transformation specific to the lines of
sight of the range sensor and using an image plane oriented to align
with the voxel grid. We assign the weights as vertex “colors” to be
linearly interpolated during the rendering step, an approach equiva-
lent to Gouraud shading of triangle colors.

To merge the range data into the voxel grid, we stream through
the voxel scanlines in order while stepping through the corresponding
scanlines in the resampled range image. We map each voxel scanline
to the correct portion of the range scanline as depicted in Figure 7d,
and we resample the range data to yield a distance from the range sur-
face. Using the combination rules given by equations 3 and 4, we up-
date the run-length encoded structure. To preserve the linear mem-
ory structure of the RLE volume (and thus avoid using linked lists of
runs scattered through the memory space), we read the voxel scanlines
from the current volume and write the updated scanlines to a second
RLE volume; i.e., we double-buffer the voxel grid. Note that depend-
ing on the scanner geometry, the mapping from voxels to range image
pixels may not be linear, in which case care must be taken to resample
appropriately [5].

For the case of merging range data only in the vicinity of the sur-
face, we try to avoid processing voxels distant from the surface. To
that end, we construct a binary tree of minimum and maximum depths
for every adjacent pair of resampled range image scanlines. Before
processing each voxel scanline, we query the binary tree to decide
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Figure 7. Range image resampling and scanline order voxel updates. (a) Range image scanlines are not in general oriented to allow for coherently streaming
through voxel and range scanlines. (b) By resampling the range image, we can obtain the desired range scanline orientation. (c) Casting rays from the p ixels on
the range image means cutting across scanlines of the voxel grid, resulting in poor memory performance. (d) Instead, we run along scanlines of voxels, mapping
them to the correct positions on the resampled range image.

which voxels, if any, are near the range surface. In this way, only rel-
evant pieces of the scanline are processed. In a similar fashion, the
space carving steps can be designed to avoid processing voxels that
are not seen to be empty for a given range image. The resulting speed-
ups from the binary tree are typically a factor of 15 without carving,
and a factor of 5 with carving. We did not implement a brute-force
volume update method, however we would expect the overall algo-
rithm described here would be much faster by comparison.

5.2.3 Fast surface extraction
To generate our final surfaces, we employ a Marching Cubes algo-
rithm [20] with a lookup table that resolves ambiguous cases [22]. To
reduce computational costs, we only process voxels that have varying
data or are at the boundary between empty and unseen.

6 Results
We show results for a number of objects designed to explore the ro-
bustness of our algorithm, its ability to fill gaps in the reconstruction,
and its attainable level of detail. To explore robustness, we scanned a
thin drill bit using the traditional method of optical triangulation. Due
to the false edge extensions inherent in data from triangulation scan-
ners [6], this particular object poses a formidable challenge, yet the
volumetric method behaves robustly where the zippering method [30]
fails catastrophically. The dragon sequence in Figure 11 demonstrates
the effectiveness of carving space for hole filling. The use of a back-
drop here is particularly effective in filling the gaps in the model. Note
that we do not use the backdrop at all times, in part because the range
images are much denser and more expensive to process, and also be-
cause the backdrop tends to obstruct the path of the object when auto-
matically repositioning it with our motion control platform. Finally,
the “Happy Buddha” sequence in Figure 12 shows that our method
can be used to generate very detailed, hole-free models suitable for
rendering and rapid manufacturing.

Statistics for the reconstruction of the dragon and Buddha models
appear in Figure 8. With the optimizations described in the previous
section, we were able to reconstruct the observed portions of the sur-
faces in under an hour on a 250 MHz MIPS R4400 processor. The
space carving and hole filling algorithm is not completely optimized,
but the execution times are still in the range of 3-5 hours, less than the
time spent acquiring and registering the range images. For both mod-
els, the RMS distance between points in the original range images and
points on the reconstructed surfaces is approximately 0.1 mm. This
figure is roughly the same as the accuracy of the scanning technology,
indicating a nearly optimal surface reconstruction.

7 Discussion and future work
We have described a new algorithm for volumetric integration of
range images, leading to a surface reconstruction without holes. The

algorithm has a number of desirable properties, including the repre-
sentation of directional sensor uncertainty, incremental and order in-
dependent updating, robustness in the presence of sensor errors, and
the ability to fill gaps in the reconstruction by carving space. Our use
of a run-length encoded representation of the voxel grid and synchro-
nized processing of voxel and resampled range image scanlines make
the algorithm efficient. This in turn allows us to acquire and integrate
a large number of range images. In particular, we demonstrate the
ability to integrate up to 70 scans into a high resolution voxel grid to
generate million polygon models in a few hours. These models are
free of holes, making them suitable for surface fitting, rapid prototyp-
ing, and rendering.

There are a number of limitations that prevent us from generating
models from an arbitrary object. Some of these limitations arise from
the algorithm while others arise from the limitations of the scanning
technology. Among the algorithmic limitations, our method has dif-
ficulty bridging sharp corners if no scan spans both surfaces meeting
at the corner. This is less of a problem when applying our hole-filling
algorithm, but we are also exploring methods that will work without
hole filling. Thin surfaces are also problematic. As described in sec-
tion 3, the influences of observed surfaces extend behind their esti-
mated positions for each range image and can interfere with distance
functions originating from scans of the opposite side of a thin surface.
In this respect, the apexes of sharp corners also behave like thin sur-
faces. While we have limited this influence as much as possible, it
still places a lower limit on the thickness of surface that we can reli-
ably reconstruct without causing artifacts such as thickening of sur-
faces or rounding of sharp corners. We are currently working to lift
this restriction by considering the estimated normals of surfaces.

Other limitations arise from the scanning technologies themselves.
Optical methods such as the one we use in this paper can only pro-
vide data for external surfaces; internal cavities are not seen. Further,
very complicated objects may require an enormous amount of scan-
ning to cover the surface. Optical triangulation scanning has the ad-
ditional problem that both the laser and the sensor must observe each
point on the surface, further restricting the class of objects that can be
scanned completely. The reflectance properties of objects are also a
factor. Optical methods generally operate by casting light onto an ob-
ject, but shiny surfaces can deflect this illumination, dark objects can
absorb it, and bright surfaces can lead to interreflections. To minimize
these effects, we often paint our objects with a flat, gray paint.

Straightforward extensions to our algorithm include improving the
execution time of the space carving portion of the algorithm and
demonstrating parallelization of the whole algorithm. In addition,
more aggressive space carving may be possible by making inferences
about sensor lines of sight that return no range data. In the future, we
hope to apply our methods to other scanning technologies and to large
scale objects such as terrain and architectural scenes.
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A Isosurface as least squares minimizer

It is possible to show that the isosurface of the weighted signed dis-
tance function is equivalent to a least squares minimization of squared
distances between points on the range surfaces and points on the de-
sired reconstruction. The key assumptions are that the range sensor is
orthographic and that the range errors are independently distributed
along sensor lines of sight. A full proof is beyond the scope of this
paper, but we provide a sketch here. See [5] for details.

Consider a region, R, on the desired surface, f , which is observed
by n range images. We define the error between an observed range
surface and a possible reconstructed surface as the integral of the
weighted squared distances between points on the range surface and
the reconstructed surface. These distances are taken along the lines of
sight of the sensor, commensurate with the predominant directions of
uncertainty (see Figure 10). The total error is the sum of the integrals
for the n range images:

z = f(x; y)

d1

d2

w2

w1

f2

f1

(x; y; z)

v2

v1

x

y

z

Figure 10. Two range surfaces, f1 and f2, are tessellated range images
acquired from directions v1 and v2. The possible range surface, z =
f(x; y), is evaluated in terms of the weighted squared distances to points
on the range surfaces taken along the lines of sight to the sensor. A point,
(x; y; z), is shown here being evaluated to find its corresponding signed
distances, d1 and d2 , and weights, w1 and w2 .

E(f) =

nX
i=1

ZZ
Ai

wi(s; t; f)di(s; t; f)
2
dsdt (6)

where each (s; t) corresponds to a particular sensor line of sight for
each range image, Ai is the domain of integration for the i’th range
image, and wi(s; t; f) and di(s; t; f) are the weights and signed dis-
tances taken along the i’th range image’s lines of sight.

Now, considera canonicaldomain,A, on a parameter plane, (x; y),
over which R is a function z = f(x; y). The total error can be re-
written as an integration over the canonical domain:

E(z) =

ZZ
A

nX
i=1

�
wi(x; y; z)di(x; y; z)

2
� �
vi � (

@z

@x
;
@z

@y
;�1)

�
dxdy

(7)
where vi is the sensing direction of the i’th range image, and the
weights and distances are evaluated at each point, (x; y; z), by first
mapping them to the lines of sight of the corresponding range image.
The dot product represents a correction term that relates differential
areas in A to differential areas in Ai. Applying the calculus of vari-
ations [31], we can construct a partial differential equation for the z
that minimizes this integral. Solving this equation we arrive at the fol-
lowing relation:

nX
i=1

@vi
[wi(x; y; z)di(x;y; z)

2] = 0 (8)

where @vi
is the directional derivative along vi. Since the weight as-

sociated with a line of sight does not vary along that line of sight, and
the signed distance has a derivative of unity along the line of sight, we
can simplify this equation to:

nX
i=1

wi(x; y; z)di(x;y; z) = 0 (9)

This weighted sum of signed distances is the same as what we com-
pute in equations 1 and 2, without the division by the sum of the
weights. Since the this divisor is always positive, the isosurface we
extract in section 3 is exactly the least squares minimizing surface de-
scribed here.
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Figure 11. Reconstruction of a dragon. Illustrations (a) - (d) are full views of the dragon. Illustrations (e) - (h) are magnified views of the section highlighted
by the green box in (a). Regions shown in red correspond to hole fill triangles. Illustrations (i) - (k) are slices through the corresponding volumetric grids at
the level indicated by the green line in (e). (a)(e)(i) Reconstruction from 61 range images without space carving and hole filling. The magnified rendering
highlights the holes in the belly. The slice through the volumetric grid shows how the signed distance ramps are maintained close to the surface. The gap in
the ramps leads to a hole in the reconstruction. (b)(f)(j) Reconstruction with space carving and hole filling using the same data as in (a). While some holes are
filled in a reasonable manner, some large regions of space are left untouched and create extraneous tessellations. The slice through the volumetric grid reveals
that the isosurface between the unseen (brown) and empty (black) regions will be connected to the isosurface extracted from the distance ramps, making it part
of the connected component of the dragon body and leaving us with a substantial number of false surfaces. (c)(g)(k) Reconstruction with 10 additional range
images using “backdrop” surfaces to effect more carving. Notice how the extraneous hole fill triangles nearly vanish. The volumetric slice shows how we have
managed to empty out the space near the belly. The bumpiness along the hole fill regions of the belly in (g) corresponds to aliasing artifacts from tessellating
over the discontinuous transition between unseen and empty regions. (d)(h) Reconstruction as in (c)(g) with filtering of the hole fill portions of the mesh. The
filtering operation blurs out the aliasing artifacts in the hole fill regions while preserving the detail in the rest of the model. Careful examination of (h) reveals
a faint ridge in the vicinity of the smoothed hole fill. This ridge is actual geometry present in all of the renderings, (e)-(h). The final model contains 1.8 million
polygons and is watertight.
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(a) (b) (c) (d) (e)

Figure 12. Reconstruction and 3D hardcopy of the “Happy Buddha”. The original is a plastic and rosewood statuette that stands 20 cm tall. Note that the camera parameters for each of these images is
different, creating a slightly different perspective in each case. (a) Photograph of the original after spray painting it matte gray to simplify scanning. (b) Gouraud-shaded rendering of one range image of the
statuette. Scans were acquired using a Cyberware scanner, modified to permit spacetime triangulation [6]. This figure illustrates the limited and fragmentary nature of the information available from a single
range image. (c) Gouraud-shaded rendering of the 2.4 million polygon mesh after merging 48 scans, but before hole-filling. Notice that the reconstructed mesh has at least as much detail as the single range
image, but is less noisy; this is most apparent around the belly. The hole in the base of the model corresponds to regions that were not observed directly by the range sensor. (d) RenderMan rendering of an
800,000 polygon decimated version of the hole-filled and filtered mesh built from 58 scans. By placing a backdrop behind the model and taking 10 additional scans, we were able to see through the space
between the base and the Buddha’s garments, allowing us to carve space and fill the holes in the base. (e) Photograph of a hardcopy of the 3D model, manufactured by 3D Systems, Inc., using stereolithography.
The computer model was sliced into 500 layers, 150 microns apart, and the hardcopy was built up layer by layer by selectively hardening a liquid resin. The process took about 10 hours. Afterwards, the
model was sanded and bead-blasted to remove the stair-step artifacts that arise during layered manufacturing.
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Remeshing
Change mesh
� Irregular mesh
� Semi-regular mesh

� Coarse mesh
� Quadrisection

� New vertex positions
� Resampling
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Resampling
Well known for images/video

� Images are functions
� Easy resampling

i

j f(i,j)
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Curved geometry
� Irregular sampling
� No functional description

Geometry Data
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Not a function
� Collection of vertex positions (x,y,z)

Geometry

X?∈= xxf )(

=X
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Parameterization
Global mathematical description
� bijection

domain parameterized surface
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Literature
Eck et al. 95
� harmonic map remeshing

Krishnamurthy & Levoy 96
� spline patches under user control

Lee et al. 98
� MAPS

Guskov et al. 00
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MAPS I
Create base domain
� mesh simplification

11776 faces 120 faces
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MAPS II
Construct mapping
� surface to base domain
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MAPS III
Construct parameterization 
� globally smooth
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Flattening
Local conformal mapping

retriangulation

flattening onto
2D plane

αz
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Parameter Assignment

va vb

vc

reassign barycentric
coordinates of old points

assign barycentric
coordinates to old point
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Parameterization
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MAPS Summary

original

domain

mapping remesh

Irregular Regular
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Features!
original

Features are 
not preserved

remesh



21

SIGGRAPH 2001 Course on Digital Geometry Processing

Feature Preservation
Algorithm:
� Find feature lines and points
� Mapping preserves features
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Map feature lines to x-axis

Feature preservation

retriangulation

flattening into
parameter plane
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Feature Preservation
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Adaptivity
Avoid uniform subdivision
� Exponential cost

Adaptive remeshing
� MAPS provides error criterium

� Distance between remesh triangle and 
corresponding surface patch

� Error driven adaptive refinement
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Adaptivity

5% 1%
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Another Example
User constrained patch boundaries

original
adaptive
remesh

patch
boundaries
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Direct Extraction
From volume to semi-regular
� No need to first run marching cubes
� McInerney, Terzopoulos, Qin, …

� Problems with non-trivial topology

� Lachaud, Shinagawa, Stander, Hart
� Uniqueness

� Here: Wood et al.
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Topology Discovery

0000
1111

1111
1111

1111

1111

1111

2222
2222

2222

2222

2222

2222
2

2222

Isocontours of distance
� Ribbon construction
� Branch identification
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Topology Discovery
Topological graph
� Ribbon classification

1-to-2 ribbon
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Mesh Construction
Ribbon stitching

conforming bridge

rings of distance n

ring of distance n+1
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Coarse Mesh Refinement
Construct hierarchical triangulation
� Match desired isosurface
� Good aspect ratios
� Smooth density variation
� Adaptive sampling density
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Solver
Balloon model with forces
� External forces
� Internal forces

� reparameterization force

� Adaptive sampling

only use 
tangential component
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Results
MRI dataset 1283

Coarse mesh 
construction: 0.5 seconds

# of triangles
MC: 58,684   Ours: 21,360

L2 error 1.8*10-4
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Results
3D Scanner 158x74x166 
� non-trivial topology

Coarse mesh construction: 
0.34 seconds

# of triangles

MC: 72,685 Ours: 46,996 
L2 error 3.3*10-4





MAPS: Multiresolution Adaptive Parameterization of Surfaces

Aaron W. F. Lee∗

Princeton University
Wim Sweldens†

Bell Laboratories
Peter Schröder‡
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Figure 1: Overview of our algorithm. Top
left: a scanned input mesh (courtesy Cyber-
ware). Next the parameter or base domain,
obtained through mesh simplification. Top
right: regions of the original mesh colored
according to their assigned base domain
triangle. Bottom left: adaptive remeshing
with subdivision connectivity (ε = 1%).
Bottom middle: multiresolution edit.

Abstract

We construct smooth parameterizations of irregular connectivity tri-
angulations of arbitrary genus 2-manifolds. Our algorithm uses hi-
erarchical simplification to efficiently induce a parameterization of
the original mesh over a base domain consisting of a small num-
ber of triangles. This initial parameterization is further improved
through a hierarchical smoothing procedure based on Loop sub-
division applied in the parameter domain. Our method supports
both fully automatic and user constrained operations. In the lat-
ter, we accommodate point and edge constraints to force the align-
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ment of iso-parameter lines with desired features. We show how
to use the parameterization for fast, hierarchical subdivision con-
nectivity remeshing with guaranteed error bounds. The remeshing
algorithm constructs an adaptively subdivided mesh directly with-
out first resorting to uniform subdivision followed by subsequent
sparsification. It thus avoids the exponential cost of the latter. Our
parameterizations are also useful for texture mapping and morphing
applications, among others.

CR Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image
Generation – Display Algorithms, Viewing Algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling - Curve, Surface, Solid and Object
Representations, Hierarchy and Geometric Transformations, Object Hierarchies.

Additional Key Words and Phrases: Meshes, surface parameterization, mesh sim-

plification, remeshing, texture mapping, multiresolution, subdivision surfaces, Loop

scheme.

1 Introduction

Dense triangular meshes routinely result from a number of 3D ac-
quisition techniques, e.g., laser range scanning and MRI volumetric
imaging followed by iso-surface extraction (see Figure 1 top left).
The triangulations form a surface of arbitrary topology—genus,
boundaries, connected components—and have irregular connectiv-
ity. Because of their complex structure and tremendous size, these
meshes are awkward to handle in such common tasks as storage,
display, editing, and transmission.



Multiresolution representations are now established as a funda-
mental component in addressing these issues. Two schools exist.
One approach extends classical multiresolution analysis and subdi-
vision techniques to arbitrary topology surfaces [19, 20, 7, 3]. The
alternative is more general and is based on sequential mesh simplifi-
cation, e.g., progressive meshes (PM) [12]; see [11] for a review. In
either case, the objective is to represent triangulated 2-manifolds in
an efficient and flexible way, and to use this description in fast algo-
rithms addressing the challenges mentioned above. Our approach
fits in the first group, but draws on ideas from the second group.

An important element in the design of algorithms which manip-
ulate mesh approximations of 2-manifolds is the construction of
“nice” parameterizations when none are given. Ideally, the man-
ifold is parameterized over a base domain consisting of a small
number of triangles. Once a surface is understood as a function
from the base domain intoR3 (or higher-D when surface attributes
are considered), many tools from areas such as approximation the-
ory, signal processing, and numerical analysis are at our disposal.
In particular, classical multiresolution analysis can be used in the
design and analysis of algorithms. For example, error controlled,
adaptive remeshing can be performed easily and efficiently. Fig-
ure 1 shows the outline of our procedure: beginning with an irregu-
lar input mesh (top left), we find a base domain through mesh sim-
plification (top middle). Concurrent with simplification, a mapping
is constructed which assigns every vertex from the original mesh to
a base triangle (top right). Using this mapping an adaptive remesh
with subdivision connectivity can be built (bottom left) which is
now suitable for such applications as multiresolution editing (bot-
tom middle). Additionally, there are other practical payoffs to good
parameterizations, for example in texture mapping and morphing.

In this paper we present an algorithm for the fast computation
of smooth parameterizations of dense 2-manifold meshes with ar-
bitrary topology. Specifically, we make the following contribu-
tions
• We describe an O(N logN) time and storage algorithm to con-

struct a logarithmic level hierarchy of arbitrary topology, ir-
regular connectivity meshes based on the Dobkin-Kirkpatrick
(DK) algorithm. Our algorithm accommodates geometric crite-
ria such as area and curvature as well as vertex and edge con-
straints.

• We construct a smooth parameterization of the original mesh
over the base domain. This parameterization is derived through
repeated conformal remapping during graph simplification fol-
lowed by a parameter space smoothing procedure based on the
Loop scheme. The resulting parameterizations are of high visual
and numerical quality.

• Using the smooth parameterization, we describe an algorithm
for adaptive, hierarchical remeshing of arbitrary meshes into
subdivision connectivity meshes. The procedure is fully auto-
matic, but also allows for user intervention in the form of fixing
point or path features in the original mesh. The remeshed man-
ifold meets conservative approximation bounds.

Even though the ingredients of our construction are reminiscent
of mesh simplification algorithms, we emphasize that our goal is
not the construction of another mesh simplification procedure, but
rather the construction of smooth parameterizations. We are par-
ticularly interested in using these parameterizations for remeshing,
although they are useful for a variety of applications.

1.1 Related Work

A number of researchers have considered—either explicitly or
implicitly—the problem of building parameterizations for arbitrary
topology, triangulated surfaces. This work falls into two main cat-
egories: (1) algorithms which build a smoothly parameterized ap-

proximation of a set of samples (e.g. [14, 1, 17]), and (2) algorithms
which remesh an existing mesh with the goal of applying classical
multiresolution approaches [7, 8].

A related, though quite different problem, is the maintenance of
a given parameterization during mesh simplification [4]. We em-
phasize that our goal is the construction of mappings when none
are given.

In the following two sections, we discuss related work and con-
trast it to our approach.

1.1.1 Approximation of a Given Set of Samples

Hoppe and co-workers [14] describe a fully automatic algorithm
to approximate a given polyhedral mesh with Loop subdivision
patches [18] respecting features such as edges and corners. Their
algorithm uses a non-linear optimization procedure taking into ac-
count approximation error and the number of triangles of the base
domain. The result is a smooth parameterization of the original
polyhedral mesh over the base domain. Since the approach only
uses subdivision, small features in the original mesh can only be re-
solved accurately by increasing the number of triangles in the base
domain accordingly. A similar approach, albeit using A-patches,
was described by Bajaj and co-workers [1]. From the point of view
of constructing parameterizations, the main drawback of algorithms
in this class is that the number of triangles in the base domain de-
pends heavily on the geometric complexity of the goal surface.

This problem was addressed in work of Krishnamurthy and
Levoy [17]. They approximate densely sampled geometry with bi-
cubic spline patches and displacement maps. Arguing that a fully
automatic system cannot put iso-parameter lines where a skilled
animator would want them, they require the user to lay out the en-
tire network of top level spline patch boundaries. A coarse to fine
matching procedure with relaxation is used to arrive at a high qual-
ity patch mesh whose base domain need not mimic small scale ge-
ometric features.

The principal drawback of their procedure is that the user is re-
quired to define the entire base domain rather then only selected
features. Additionally, given that the procedure works from coarse
to fine, it is possible for the procedure to “latch” onto the wrong
surface in regions of high curvature [17, Figure 7].

1.1.2 Remeshing

Lounsbery and co-workers [19, 20] were the first to propose al-
gorithms to extend classical multiresolution analysis to arbitrary
topology surfaces. Because of its connection to the mathematical
foundations of wavelets, this approach has proven very attractive
(e.g. [22, 7, 27, 8, 3, 28]). The central requirement of these meth-
ods is that the input mesh have subdivision connectivity. This is
generally not true for meshes derived from 3D scanning sources.

To overcome this problem, Eck and co-workers [7] developed
an algorithm to compute smooth parameterizations of high resolu-
tion polyhedral meshes over a low face count base domain. Using
such a mapping, the original surface can be remeshed using subdi-
vision connectivity. After this conversion step, adaptive simplifica-
tion, compression, progressive transmission, rendering, and editing
become simple and efficient operations [3, 8, 28].

Eck et al. arrive at the base domain through a Voronoi tiling of the
original mesh. Using a sequence of local harmonic maps, a param-
eterization which is smooth over each triangle in the base domain
and which meets with C0 continuity at base domain edges [7, Plate
1(f)] is constructed. Runtimes for the algorithm can be long be-
cause of the many harmonic map computations. This problem was
recently addressed by Duchamp and co-workers [6], who reduced
the harmonic map computations from their initialO(N2) complex-
ity to O(N logN) through hierarchical preconditioning. The hier-



archy construction they employed for use in a multigrid solver is
related to our hierarchy construction.

The initial Voronoi tile construction relies on a number of heuris-
tics which render the overall algorithm fragile (for an improved
version see [16]). Moreover, there is no explicit control over the
number of triangles in the base domain or the placement of patch
boundaries.

The algorithm generates only uniformly subdivided meshes
which later can be decimated through classical wavelet methods.
Many extra globally subdivided levels may be needed to resolve
one small local feature; moreover, each additional level quadruples
the amount of work and storage. This can lead to the intermedi-
ate construction of many more triangles than were contained in the
input mesh.

1.2 Features of MAPS

Our algorithm was designed to overcome the drawbacks of previ-
ous work as well as to introduce new features. We use a fast coar-
sification strategy to define the base domain, avoiding the potential
difficulties of finding Voronoi tiles [7, 16]. Since our algorithm pro-
ceeds from fine to coarse, correspondence problems found in coarse
to fine strategies [17] are avoided, and all features are correctly re-
solved. We use conformal maps for continued remapping during
coarsification to immediately produce a global parameterization of
the original mesh. This map is further improved through the use
of a hierarchical Loop smoothing procedure obviating the need for
iterative numerical solvers [7]. Since the procedure is performed
globally, derivative discontinuities at the edges of the base domain
are avoided [7]. In contrast to fully automatic methods [7], the al-
gorithm supports vertex and edge tags [14] to constrain the param-
eterization to align with selected features; however, the user is not
required to specify the entire patch network [17]. During remeshing
we take advantage of the original fine to coarse hierarchy to output
a sparse, adaptive, subdivision connectivity mesh directly without
resorting to a depth first oracle [22] or the need to produce a uni-
form subdivision connectivity mesh at exponential cost followed by
wavelet thresholding [3].

2 Hierarchical Surface Representation

In this section we describe the main components of our algorithm,
coarsification and map construction. We begin by fixing our nota-
tion.

2.1 Notation

When describing surfaces mathematically, it is useful to separate
the topological and geometric information. To this end we in-
troduce some notation adapted from [24]. We denote a triangu-
lar mesh as a pair (P,K), where P is a set of N point positions
pi = (xi, yi, zi) ∈ R3 with 1 ≤ i ≤ N , and K is an abstract sim-
plicial complex which contains all the topological, i.e., adjacency
information. The complex K is a set of subsets of {1, . . . , N}.
These subsets are called simplices and come in 3 types: vertices
v = {i} ∈ K, edges e = {i, j} ∈ K, and faces f = {i, j, k} ∈ K,
so that any non-empty subset of a simplex of K is again a simplex
of K, e.g., if a face is present so are its edges and vertices.

Let ei denote the standard i-th basis vector in RN . For each
simplex s, its topological realization |s| is the strictly convex hull
of {ei | i ∈ s}. Thus |{i}| = ei, |{i, j}| is the open line segment
between ei and ej , and |{i, j, k}| is an open equilateral triangle.
The topological realization |K| is defined as ∪s∈K|s|. The geomet-
ric realization ϕ(|K|) relies on a linear map ϕ : RN → R3 defined

by ϕ(ei) = pi. The resulting polyhedron consists of points, seg-
ments, and triangles inR3.

Two vertices {i} and {j} are neighbors if {i, j} ∈ K. A set
of vertices is independent if no two vertices are neighbors. A set
of vertices is maximally independent if no larger independent set
contains it (see Figure 3, left side). The 1-ring neighborhood of a
vertex {i} is the set

N (i) = {j | {i, j} ∈ K}.

The outdegree Ki of a vertex is its number of neighbors. The star
of a vertex {i} is the set of simplices

star (i) =
⋃

i∈s, s∈K

s.

We say that |K| is a two dimensional manifold (or 2-manifold)
with boundaries if for each i, |star (i)| is homeomorphic to a disk
(interior vertex) or half-disk (boundary vertex) in R2. An edge
e = {i, j} is called a boundary edge if there is only one face f with
e ⊂ f .

We define a conservative curvature estimate, κ(i) = |κ1|+ |κ2|
at pi, using the principal curvatures κ1 and κ2. These are esti-
mated by the standard procedure of first establishing a tangent plane
at pi and then using a second degree polynomial to approximate
ϕ(|star (i)|).

2.2 Mesh Hierarchies

An important part of our algorithm is the construction of a mesh
hierarchy. The original mesh (P,K) = (PL,KL) is successively
simplified into a series of homeomorphic meshes (Pl,Kl)with 0 ≤
l < L, where (P0,K0) is the coarsest or base mesh (see Figure 4).

Several approaches for such mesh simplification have been pro-
posed, most notably progressive meshes (PM) [12]. In PM the basic
operation is the “edge collapse.” A sequence of such atomic oper-
ations is prioritized based on approximation error. The linear se-
quence of edge collapses can be partially ordered based on topolog-
ical dependence [25, 13], which defines levels in a hierarchy. The
depth of these hierarchies appears “reasonable” in practice, though
can vary considerably for the same dataset [13].

Our approach is similar in spirit, but inspired by the hierarchy
proposed by Dobkin and Kirkpatrick (DK) [5], which guarantees
that the number of levels L isO(logN). While the original DK hi-
erarchy is built for convex polyhedra, we show how the idea behind
DK can be used for general polyhedra. The DK atomic simplifi-
cation step is a vertex remove, followed by a retriangulation of the
hole.

The two basic operations “vertex remove” and “edge collapse”
are related since an edge collapse into one of its endpoints corre-
sponds to a vertex remove with a particular retriangulation of the
resulting hole (see Figure 2). The main reason we chose an algo-
rithm based on the ideas of the DK hierarchy is that it guarantees a
logarithmic bound on the number of levels. However, we empha-
size that the ideas behind our map constructions apply equally well
to PM type algorithms.

2.3 Vertex Removal

One DK simplification step Kl → Kl−1 consists of removing a
maximally independent set of vertices with low outdegree (see Fig-
ure 3). To find such a set, the original DK algorithm used a greedy
approach based only on topological information. Instead, we use
a priority queue based on both geometric and topological informa-
tion.

At the start of each level of the original DK algorithm, none of
the vertices are marked and the set to be removed is empty. The



General Edge collapse operation

Half edge collapse as vertex removal with special retriangulation

Vertex removal followed by retriangulation

Figure 2: Examples of different atomic mesh simplification steps. At
the top vertex removal, in the middle half-edge collapse, and edge
collapse at the bottom.

algorithm randomly selects a non-marked vertex of outdegree less
than 12, removes it and its star from Kl, marks its neighbors as
unremovable and iterates this until no further vertices can be re-
moved. In a triangulated surface the average outdegree of a vertex
is 6. Consequently, no more than half of the vertices can be of out-
degree 12 or more. Thus it is guaranteed that at least 1/24 of the
vertices will be removed at each level [5]. In practice, it turns out
one can remove roughly 1/4 of the vertices reflecting the fact that
the graph is four-colorable. Given that a constant fraction can be
removed on each level, the number of levels behaves as O(logN).
The entire hierarchy can thus be constructed in linear time.

In our approach, we stay in the DK framework, but replace the
random selection of vertices by a priority queue based on geometric
information. Roughly speaking, vertices with small and flat 1-ring
neighborhoods will be chosen first. At level l, for a vertex pi ∈
P l, we consider its 1-ring neighborhood ϕ(|star (i)|) and compute
its area a(i) and estimate its curvature κ(i). These quantities are
computed relative to Kl, the current level. We assign a priority to
{i} inversely proportional to a convex combination of relative area
and curvature

w(λ, i) = λ
a(i)

maxpi∈Pl a(i)
+ (1− λ) κ(i)

maxpi∈Pl κ(i)
.

(We found λ = 1/2 to work well in our experiments.) Omitting all
vertices of outdegree greater than 12 from the queue, removal of a
constant fraction of vertices is still guaranteed. Because of the sort
implied by the priority queue, the complexity of building the entire
hierarchy grows to O(N logN).

Figure 4 shows three stages (original, intermediary, coarsest) of
the DK hierarchy. Given that the coarsest mesh is homeomorphic
to the original mesh, it can be used as the domain of a parameteri-
zation.

Mesh at level l Mesh at level l-1

Figure 3: On the left a mesh with a maximally independent set of
vertices marked by heavy dots. Each vertex in the independent set
has its respective star highlighted. Note that the star ’s of the inde-
pendent set do not tile the mesh (two triangles are left white). The
right side gives the retriangulation after vertex removal.

2.4 Flattening and Retriangulation

To find Kl−1, we need to retriangulate the holes left by removing
the independent set. One possibility is to find a plane into which to
project the 1-ring neighborhood ϕ(|star (i)|) of a removed vertex
ϕ(|i|) without overlapping triangles and then retriangulate the hole
in that plane. However, finding such a plane, which may not even
exist, can be expensive and involves linear programming [4].

Instead, we use the conformal map za [6] which minimizes met-
ric distortion to map the neighborhood of a removed vertex into the
plane. Let {i} be a vertex to be removed. Enumerate cyclically
the Ki vertices in the 1-ring N (i) = {jk | 1 ≤ k ≤ Ki} such
that {jk−1, i, jk} ∈ Kl with j0 = jKi . A piecewise linear ap-
proximation of za, which we denote by µi, is defined by its values
for the center point and 1-ring neighbors; namely, µi(pi) = 0 and
µi(pjk ) = rak exp(iθk a), where rk = ‖pi − pjk‖,

θk =

k∑

l=1


 (pjl−1 , pi, pjl),

and a = 2π/θKi . The advantages of the conformal map are nu-
merous: it always exists, it is easy to compute, it minimizes metric
distortion, and it is a bijection and thus never maps two triangles on
top of each other. Once the 1-ring is flattened, we can retriangulate
the hole using, for example, a constrained Delaunay triangulation
(CDT) (see Figure 5). This tells us how to build Kl−1.

When the vertex to be removed is a boundary vertex, we map to a
half disk by setting a = π/θKi (assuming j1 and jKi are boundary
vertices and setting θ1 = 0). Retriangulation is again performed
with a CDT.

3 Initial Parameterization

To find a parameterization, we begin by constructing a bijection
Π from ϕ(|KL|) to ϕ(|K0|). The parameterization of the original
mesh over the base domain follows from Π−1(ϕ(|K0|)). In other
words, the mapping of a point p ∈ ϕ(|KL|) through Π is a point
p0 = Π(v) ∈ ϕ(|K0|), which can be written as

p0 = αpi + β pj + γ pk,

where {i, j, k} ∈ K0 is a face of the base domain and α, β and γ
are barycentric coordinates, i.e., α+ β + γ = 1.



Intermediate mesh (level 6)

Coarsest mesh (level 0)

Original mesh (level 14)

Figure 4: Example of a modified DK mesh hierarchy. At the top
the finest (original) mesh ϕ(|KL|) followed by an intermediate
mesh, and the coarsest (base) mesh ϕ(|K0|) at the bottom (orig-
inal dataset courtesy University of Washington).

The mapping can be computed concurrently with the hierarchy
construction. The basic idea is to successively compute piecewise
linear bijections Πl between ϕ(|KL|) and ϕ(|Kl|) starting with
ΠL, which is the identity, and ending with Π0 = Π.

Notice that we only need to compute the value of Πl at the ver-
tices of KL. At any other point it follows from piecewise linearity.1

Assume we are given Πl and want to compute Πl−1. Each vertex
{i} ∈ KL falls into one of the following categories:

1. {i} ∈ Kl−1: The vertex is not removed on level l and sur-
vives on level l − 1. In this case nothing needs to be done.
Πl−1(pi) = Π

l(pi) = pi.

2. {i} ∈ Kl \Kl−1: The vertex gets removed when going from
l to l− 1. Consider the flattening of the 1-ring around pi (see
Figure 5). After retriangulation, the origin lies in a triangle
which corresponds to some face t = {j, k,m} ∈ Kl−1 and
has barycentric coordinates (α, β, γ) with respect to the ver-
tices of that face, i.e., αµi(pj) + β µi(pk) + γ µi(pm) (see
Figure 6). In that case, let Πl−1(pi) = αpj + β pk + γ pm.

3. {i} ∈ KL \Kl: The vertex was removed earlier, thus

1In the vicinity of vertices in Kl a triangle {i, j, k} ∈ KL can straddle
multiple triangles in Kl. In this case the map depends on the flattening
strategy used (see Section 2.4).

3 space

retriangulation

Flattening into parameter plane

Figure 5: In order to remove a vertex pi, its star (i) is mapped from
3-space to a plane using the map za. In the plane the central vertex
is removed and the resulting hole retriangulated (bottom right).

k

m

jpoint in new triangle
coordinates to old
assign barycentric

Figure 6: After retriangulation of a hole in the plane (see Figure 5),
the just removed vertex gets assigned barycentric coordinates with
respect to the containing triangle on the coarser level. Similarly, all
the finest level vertices that were mapped to a triangle of the hole
now need to be reassigned to a triangle of the coarser level.

Πl(pi) = α′ pj′ + β′ pk′ + γ′ pm′ for some triangle t′ =
{j′, k′,m′} ∈ Kl. If t′ ∈ Kl−1, nothing needs to be
done; otherwise, the independent set guarantees that ex-
actly one vertex of t′ is removed, say {j′}. Consider the
conformal map µj′ (Figure 6). After retriangulation, the
µj′(pi) lies in a triangle which corresponds to some face
t = {j, k,m} ∈ Kl−1 with barycentric coordinates (α, β, γ)
(black dots within highlighted face in Figure 6). In that case,
let Πl−1(pi) = αpj + β pk + γ pm (i.e., all vertices in Fig-
ure 6 are reparameterized in this way).

Note that on every level, the algorithm requires a sweep through all
the vertices of the finest level resulting in an overall complexity of
O(N logN).

Figure 7 visualizes the mapping we just computed. For each
point pi from the original mesh, its mapping Π(pi) is shown with a
dot on the base domain.

Caution: Given that every association between a 1-ring and its
retriangulated hole is a bijection, so is the mapping Π. However,
Π does not necessarily map a finest level triangle to a triangular
region in the base domain. Instead the image of a triangle may be
a non-convex region. In that case connecting the mapped vertices
with straight lines can cause flipping, i.e., triangles may end up on



Figure 7: Base domain ϕ(|K0|). For each point pi from the original
mesh, its mapping Π(pi) is shown with a dot on the base domain.

top of each other (see Figure 8 for an example). Two methods ex-
ist for dealing with this problem. First one could further subdivide
the original mesh in the problem regions. Given that the underlying
continuous map is a bijection, this is guaranteed to fix the prob-
lem. The alternative is to use some brute force triangle unflipping
mechanism. We have found the following scheme to work well:
adjust the parameter values of every vertex whose 2-neighborhood
contains a flipped triangle, by replacing them with the averaged pa-
rameter values of its 1-ring neighbors [7].

image of vertices

mapping onto base domain

image of triangle

original mesh

Figure 8: Although the mapping Π from the original mesh to a
base domain triangle is a bijection, triangles do not in general
get mapped to triangles. Three vertices of the original mesh get
mapped to a concave configuration on the base domain, causing
the piecewise linear approximation of the map to flip the triangle.

3.1 Tagging and Feature Lines

In the algorithm described so far, there is no a priori control over
which vertices end up in the base domain or how they will be con-
nected. However, often there are features which one wants to pre-
serve in the base domain. These features can either be detected
automatically or specified by the user.

We consider two types of features on the finest mesh: vertices
and paths of edges. Guaranteeing that a certain vertex of the orig-
inal mesh ends up in the base domain is straightforward. Simply
mark that vertex as unremovable throughout the DK hierarchy.

We now describe an algorithm to guarantee that a certain path of
edges on the finest mesh gets mapped to an edge of the base do-
main. Let {vi | 1 ≤ i ≤ I} ⊂ KL be a set of vertices on the
finest level which form a path, i.e., {vi, vi+1} is an edge. Tag all
the edges in the path as feature edges. First tag v1 and vI , so called
dart points [14], as unremovable so they are guaranteed to end up
in the base domain. Let vi be the first vertex on the interior of the
path which gets marked for removal in the DK hierarchy, say, when
going from level l to l − 1. Because of the independent set prop-
erty, vi−1 and vi+1 cannot be removed and therefore must belong to
Kl−1. When flattening the hole around vi, tagged edges are treated
like a boundary. We first straighten out the edges {vi−1, vi} and

retriangulation

Flattening into parameter plane

3 space

Figure 9: When a vertex with two incident feature edges is removed,
we want to ensure that the subsequent retriangulation adds a new
feature edge to replace the two old ones.

{vi, vi+1} along the x-axis, and use two boundary type conformal
maps to the half disk above and below (cf. the last paragraph of
Section 2.4). When retriangulating the hole around vi, we put the
edge {vi−1, vi+1} in Kl−1, tag it as a feature edge, and compute
a CDT on the upper and lower parts (see Figure 9). If we apply
similar procedures on coarser levels, we ensure that v1 and vI re-
main connected by a path (potentially a single edge) on the base
domain. This guarantees that Π maps the curved feature path onto
the coarsest level edge(s) between v1 and vI .

In general, there will be multiple feature paths which may be
closed or cross each other. As usual, a vertex with more than 2
incident feature edges is considered a corner, and marked as unre-
movable.

The feature vertices and paths can be provided by the user or
detected automatically. As an example of the latter case, we con-
sider every edge whose dihedral angle is below a certain threshold
to be a feature edge, and every vertex whose curvature is above a
certain threshold to be a feature vertex. An example of this strategy
is illustrated in Figure 13.

3.2 A Quick Review

Before we consider the problem of remeshing, it may be helpful
to review what we have at this point. We have established an ini-
tial bijection Π of the original surface ϕ(|KL|) onto a base domain
ϕ(|K0|) consisting of a small number of triangles (e.g. Figure 7).
We use a simplification hierarchy (Figure 4) in which the holes af-
ter vertex removal are flattened and retriangulated (Figures 5 and 9).
Original mesh points get successively reparametrized over coarser
triangulations (Figure 6). The resulting mapping is always a bijec-
tion; triangle flipping (Figure 8) is possible but can be corrected.

4 Remeshing

In this section, we consider remeshing using subdivision connectiv-
ity triangulations since it is both a convenient way to illustrate the
properties of a parameterization and is an important subject in its
own right. In the process, we compute a smoothed version of our
initial parameterization. We also show how to efficiently construct
an adaptive remeshing with guaranteed error bounds.



4.1 Uniform Remeshing

Since Π is a bijection, we can use Π−1 to map the base domain
to the original mesh. We follow the strategy used in [7]: regu-
larly (1:4) subdivide the base domain and use the inverse map to
obtain a regular connectivity remeshing. This introduces a hierar-
chy of regular meshes (Qm,Rm) (Q is the point set and R is the
complex) obtained from m-fold midpoint subdivision of the base
domain (P0,K0) = (Q0,R0). Midpoint subdivision implies that
all new domain points lie in the base domain, Qm ⊂ ϕ(|R0|) and
|Rm| = |R0|. All vertices of Rm \R0 have outdegree 6. The
uniform remeshing of the original mesh on level m is given by
(Π−1(Qm),Rm).

We thus need to compute Π−1(q) where q is a point in the base
domain with dyadic barycentric coordinates. In particular, we need
to compute which triangle of ϕ(|KL|) contains Π−1(q), or, equiv-
alently, which triangle of Π(ϕ(|KL|)) contains q. This is a stan-
dard point location problem in an irregular triangulation. We use
the point location algorithm of Brown and Faigle [2] which avoids
looping that can occur with non-Delaunay meshes [10, 9]. Once we
have found the triangle {i, j, k} which contains q, we can write q
as

q = αΠ(pi) + βΠ(pj) + γΠ(pk),

and thus

Π−1(q) = αpi + β pj + γ pk ∈ ϕ(|KL|).

Figure 10 shows the result of this procedure: a level 3 uniform
remeshing of a 3-holed torus using the Π−1 map.

A note on complexity: The point location algorithm is essen-
tially a walk on the finest level mesh with complexity O(

√
N). Hi-

erarchical point location algorithms, which have asymptotic com-
plexityO(logN), exist [15] but have a much larger constant. Given
that we schedule the queries in a systematic order, we almost always
have an excellent starting guess and observe a constant number of
steps. In practice, the finest level “walking” algorithm beats the hi-
erarchical point location algorithms for all meshes we encountered
(up to 100K faces).

Figure 10: Remeshing of 3 holed torus using midpoint subdivision.
The parameterization is smooth within each base domain triangle,
but clearly not across base domain triangles.

4.2 Smoothing the Parameterization

It is clear from Figure 10 that the mapping we used is not smooth
across global edges. One way to obtain global smoothness is to
consider a map that minimizes a global smoothness functional and
goes from ϕ(|KL|) to |K0| rather than to ϕ(|K0|). This would
require an iterative PDE solver. We have found computation of
mappings to topological realizations that live in a high dimensional
space to be needlessly cumbersome.

Instead, we use a much simpler and cheaper smoothing tech-
nique based on Loop subdivision. The main idea is to computeΠ−1

at a smoothed version of the dyadic points, rather then at the dyadic
points themselves (which can equivalently be viewed as changing
the parameterization). To that end, we define a map L from the base
domain to itself by the following modification of Loop:
• If all the points of the stencil needed for computing either a new

point or smoothing an old point are inside the same triangle of
the base domain, we can simply apply the Loop weights and the
new points will be in that same face.

• If the stencil stretches across two faces of the base domain, we
flatten them out using a “hinge” map at their common edge.
We then compute the point’s position in this flattened domain
and extract the triangle in which the point lies together with its
barycentric coordinates.

• If the stencil stretches across multiple faces, we use the confor-
mal flattening strategy discussed earlier.

Note that the modifications to Loop force L to map the base do-
main onto the base domain. We emphasize that we do not apply the
classic Loop scheme (which would produce a “blobby” version of
the base domain). Nor are the surface approximations that we later
produce Loop surfaces.

The composite map Π−1 ◦ L is our smoothed parameterization
that maps the base domain onto the original surface. The m-th
level of uniform remeshing with the smoothed parameterization is
(Π−1 ◦ L(Qm),Rm), where Qm, as before, are the dyadic points
on the base domain. Figure 11 shows the result of this procedure:
a level 3 uniform remeshing of a 3-holed torus using the smoothed
parameterization.

When the mesh is tagged, we cannot apply smoothing across the
tagged edges since this would break the alignment with the features.
Therefore, we use modified versions of Loop which can deal with
corners, dart points and feature edges [14, 23, 26] (see Figure 13).

Figure 11: The same remeshing of the 3-holed torus as in Figure 10,
but this time with respect to a Loop smoothed parameterization.
Note: Because the Loop scheme only enters in smoothing the pa-
rameterization the surface shown is still a sampling of the original
mesh, not a Loop surface approximation of the original.

4.3 Adaptive Remeshing

One of the advantages of meshes with subdivision connectivity is
that classical multiresolution and wavelet algorithms can be em-
ployed. The standard wavelet algorithms used, e.g., in image com-
pression, start from the finest level, compute the wavelet transform,
and then obtain an efficient representation by discarding small
wavelet coefficients. Eck et al. [7, 8] as well as Certain et al. [3] fol-
low a similar approach: remesh using a uniformly subdivided grid
followed by decimation through wavelet thresholding. This has the
drawback that in order to resolve a small local feature on the origi-
nal mesh, one may need to subdivide to a very fine level. Each extra



level quadruples the number of triangles, most of which will later
be decimated using the wavelet procedure. Imagine, e.g., a plane
which is coarsely triangulated except for a narrow spike. Making
the spike width sufficiently small, the number of levels needed to
resolve it can be made arbitrarily high.

In this section we present an algorithm which avoids first build-
ing a full tree and later pruning it. Instead, we immediately build the
adaptive mesh with a guaranteed conservative error bound. This is
possible because the DK hierarchy contains the information on how
much subdivision is needed in any given area. Essentially, we let
the irregular DK hierarchy “drive” the adaptive construction of the
regular pyramid.

We first compute for each triangle t ∈ K0 the following error
quantity:

E(t) = max
pi∈PLand Π(pi)∈ϕ(|t|)

dist(pi, ϕ(|t|)).

This measures the distance between one triangle in the base domain
and the vertices of the finest level mapped to that triangle.

The adaptive algorithm is now straightforward. Set a certain rel-
ative error threshold ε. Compute E(t) for all triangles of the base
domain. If E(t)/B, where B is the largest side of the bounding
box, is larger than ε, subdivide the domain triangle using the Loop
procedure above. Next, we need to reassign vertices to the triangles
of level m = 1. This is done as follows: For each point pi ∈ PL
consider the triangle t of K0 to which it it is currently assigned.
Next consider the 4 children of t on level 1, tj with j = 0, 1, 2, 3
and compute the distance between pi and each of the ϕ(|tj |). As-
sign pi to the closest child. Once the finest level vertices have been
reassigned to level 1 triangles, the errors for those triangles can be
computed. Now iterate this procedure until all triangles have an
error below the threshold. Because all errors are computed from
the finest level, we are guaranteed to resolve all features within the
error bound. Note that we are not computing the true distance be-
tween the original vertices and a given approximation, but rather an
easy to compute upper bound for it.

In order to be able to compute the Loop smoothing map L on
an adaptively subdivided grid, the grid needs to satisfy a vertex re-
striction criterion, i.e., if a vertex has a triangle incident to it with
depth i, then it must have a complete 1-ring at level i−1 [28]. This
restriction may necessitate subdividing some triangles even if they
are below the error threshold. Examples of adaptive remeshing can
be seen in Figure 1 (lower left), Figure 12, and Figure 13.

Figure 12: Example remesh of a surface with boundaries.

5 Results

We have implemented MAPS as described above and applied it to
a number of well known example datasets, as well as some new

ones. The application was written in C++ using standard compu-
tational geometry data structures, see e.g. [21], and all timings re-
ported in this section were measured on a 200 MHz PentiumPro
personal computer.

Figure 13: Left (top to bottom): three levels in the DK pyramid,
finest (L = 15) with 12946, intermediate (l = 8) with 1530, and
coarsest (l = 0) with 168 triangles. Feature edges, dart and cor-
ner vertices survive on the base domain. Right (bottom to top):
adaptive mesh with ε = 5% and 1120 triangles (bottom), ε = 1%
and 3430 triangles (middle), and uniform level 3 (top). (Original
dataset courtesy University of Washington.)

The first example used throughout the text is the 3-holed torus.
The original mesh contained 11776 faces. These were reduced in
the DK hierarchy to 120 faces over 14 levels implying an average
removal of 30% of the faces on a given level. The remesh of Fig-
ure 11 used 4 levels of uniform subdivision for a total of 30720
triangles.

The original sampled geometry of the 3-holed torus is smooth
and did not involve any feature constraints. A more challenging
case is presented by the fandisk shown in Figure 13. The original
mesh (top left) contains 12946 triangles which were reduced to 168



Figure 14: Example of a constrained parameterization based on user input. Top: original input mesh (100000 triangles) with edge tags
superimposed in red, green lines show some smooth iso-parameter lines of our parameterization. The middle shows an adaptive subdivision
connectivity remesh. The bottom one patches corresponding to the eye regions (right eye was constrained, left eye was not) are highlighted to
indicate the resulting alignment of top level patches with the feature lines. (Dataset courtesy Cyberware.)

faces in the base domain over 15 levels (25% average face removal
per level). The initial mesh had all edges with dihedral angles be-
low 75o tagged (1487 edges), resulting in 141 tagged edges at the
coarsest level. Adaptive remeshing to within ε = 5% and ε = 1%
(fraction of longest bounding box side) error results in the meshes
shown in the right column. The top right image shows a uniform
resampling to level 3, in effect showing iso-parameter lines of the
parameterization used for remeshing. Note how the iso-parameter
lines conform perfectly to the initially tagged features.

This dataset demonstrates one of the advantages of our method—
inclusion of feature constraints—over the earlier work of Eck et
al. [7]. In the original PM paper [12, Figure 12], Hoppe shows the
simplification of the fandisk based on Eck’s algorithm which does
not use tagging. He points out that the multiresolution approxima-
tion is quite poor at low triangle counts and consequently requires
many triangles to achieve high accuracy. The comparison between
our Figure 13 and Figure 12 in [12] demonstrates that our multires-
olution algorithm which incorporates feature tagging solves these
problems.

Another example of constrained parameterization and subse-
quent adaptive remeshing is shown in Figure 14. The original
dataset (100000 triangles) is shown on the left. The red lines in-
dicate user supplied feature constraints which may facilitate subse-
quent animation. The green lines show some representative iso-
parameter lines of our parameterization subject to the red fea-
ture constraints. Those can be used for computing texture coor-
dinates. The middle image shows an adaptive subdivision connec-
tivity remesh with 74698 triangles (ε = 0.5%). On the right we
have highlighted a group of patches, 2 over the right (constrained)
eye and 1 over the left (unconstrained) eye. This indicates how user
supplied constraints force domain patches to align with desired fea-
tures. Other enforced patch boundaries are the eyebrows, center
of the nose, and middle of lips (see red lines in left image). This

example illustrates how one places constraints like Krishnamurthy
and Levoy [17]. We remove the need in their algorithms to specify
the entire base domain. A user may want to control patch outlines
for editing in one region (e.g., on the face), but may not care about
what happens in other regions (e.g., the back of the head).

We present a final example in Figure 1. The original mesh
(96966 triangles) is shown on the top left, with the adaptive, subdi-
vision connectivity remesh on the bottom left. This remesh was
subsequently edited in a interactive multiresolution editing sys-
tem [28] and the result is shown on the bottom middle.

6 Conclusions and Future Research

We have described an algorithm which establishes smooth parame-
terizations for irregular connectivity, 2-manifold triangular meshes
of arbitrary topology. Using a variant of the DK hierarchy con-
struction, we simplify the original mesh and use piecewise linear
approximations of conformal mappings to incrementally build a
parameterization of the original mesh over a low face count base
domain. This parameterization is further improved through a hier-
archical smoothing procedure which is based on Loop smoothing in
parameter space. The resulting parameterizations are of high qual-
ity, and we demonstrated their utility in an adaptive, subdivision
connectivity remeshing algorithm that has guaranteed error bounds.
The new meshes satisfy the requirements of multiresolution repre-
sentations which generalize classical wavelet representations and
are thus of immediate use in applications such as multiresolution
editing and compression. Using edge and vertex constraints, the
parameterizations can be forced to respect feature lines of interest
without requiring specification of the entire patch network.

In this paper we have chosen remeshing as the primary applica-
tion to demonstrate the usefulness of the parameterizations we pro-



Dataset Input size Hierarchy Levels P0 size Remeshing Remesh Output size
(triangles) creation (triangles) tolerance creation (triangles)

3-hole 11776 18 (s) 14 120 (NA) 8 (s) 30720
fandisk 12946 23 (s) 15 168 1% 10 (s) 3430
fandisk 12946 23 (s) 15 168 5% 5 (s) 1130
head 100000 160 (s) 22 180 0.5% 440 (s) 74698
horse 96966 163 (s) 21 254 1% 60 (s) 15684
horse 96966 163 (s) 21 254 0.5% 314 (s) 63060

Table 1: Selected statistics for the examples discussed in the text. All times are in seconds on a 200 MHz PentiumPro.

duce. The resulting meshes may also find application in numerical
analysis algorithms, such as fast multigrid solvers. Clearly there
are many other applications which benefit from smooth parame-
terizations, e.g., texture mapping and morphing, which would be
interesting to pursue in future work. Because of its independent set
selection the standard DK hierarchy creates topologically uniform
simplifications. We have begun to explore how the selection can
be controlled using geometric properties. Alternatively, one could
use a PM framework to control geometric criteria of simplification.
Perhaps the most interesting question for future research is how to
incorporate topology changes into the MAPS construction.
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Abstract

We present a novel method to extract iso-surfaces from distance
volumes. It generates high quality semi-regular multiresolution
meshes of arbitrary topology. Our technique proceeds in two stages.
First, a very coarse mesh with guaranteed topology is extracted.
Subsequently an iterative multi-scale force-based solver refines the
initial mesh into a semi-regular mesh with geometrically adaptive
sampling rate and good aspect ratio triangles. The coarse mesh ex-
traction is performed using a new approach we callsurface wave-
front propagation. A set of discrete iso-distance ribbons are rapidly
built and connected while respecting the topology of the iso-surface
implied by the data. Subsequent multi-scale refinement is driven by
a simple force-based solver designed to combine good iso-surface
fit and high quality sampling through reparameterization. In con-
trast to the Marching Cubes technique our output meshes adapt
gracefully to the iso-surface geometry, have a natural multiresolu-
tion structure and good aspect ratio triangles, as demonstrated with
a number of examples.
Keywords: Semi-regular meshes, subdivision, volumes, surface extraction, implicit

functions, level set methods

1 Introduction
Iso-surface extraction is a fundamental technique of scientific vi-
sualization and one of the most useful tools for visualizing volume
data. The predominant algorithm for iso-surface extraction, March-
ing Cubes (MC) [36], computes a local triangulation within each
voxel of the volume containing the surface, resulting in a uniform
resolution mesh. Often much smaller meshes adequately describe
the surface since MC meshes tend to oversample the iso-surface,
encumbering downstream applications, e.g., rendering, denoising,
finite element simulations, and network transmission. These chal-
lenges can be addressed through multiresolution mesh representa-
tions.

We present a method for thedirect extraction of an adaptively
sampled multiresolution iso-surface mesh with good aspect ratio
triangles. The multiresolution structure is based on adaptivesemi-
regular meshes, well known from the subdivision setting [54]. A
semi-regular mesh consists of a coarsest level triangle mesh which
is recursively refined through quadrisection. The resulting meshes
have regular (valence 6) vertices almost everywhere. Adaptivity is
achieved through terminating the recursion appropriately and en-
forcing a restriction criterion (triangles sharing an edge must be
off by no more than one level of refinement). Conforming edges
are used to prevent T-vertices (see Fig. 1). Because of their spe-
cial structure such meshes enjoy many benefits including efficient
compression [25] and editing [55] (among many others). Since the

Figure 1: Example extractions of adaptive semi-regular meshes
from volumes using our algorithm.

mesh hierarchy is represented through a forest of quad-trees, im-
plementation is simple, elegant, and efficient. Figure 1 shows an
example of a multiresolution semi-regular mesh extracted from a
distance volume with our algorithm.

1.1 Contributions
We propose an algorithm for the extraction of semi-regular meshes
directly from volume data. In a first step a coarse, irregular connec-
tivity mesh with the same global topology as the iso-surface is ex-
tracted (Fig. 2, left). This stage works for arbitrary scalar volumes
with well defined iso-surfaces and has a small memory footprint.
In a second step the mesh is refined and its geometry optimized
(Fig. 2, right). Here we require a distance volume for the desired
iso-surface. During refinement, aspect ratios and sizes of triangles
are controlled through adaptive quadrisection andreparameteriza-
tion forces. Since our algorithm proceeds from coarser to finer res-
olutions, simple multi-scale methods are easily used. In particular
we solve successively for the best fitting mesh at increasing resolu-
tions using an upsampling of a coarser solution as the starting guess
for the next finer level. In summary, novel aspects of our algorithm
include:
• direct extraction of semi-regular meshes from volume data;

• a new and fast method to extract a topologically accurate coarse
mesh with low memory requirements, suitable for large datasets;

• an improved force-based approach to quickly converge to a re-
fined mesh that adaptively fits the data with good aspect ratio
triangles.

1.2 Related Work
Traditional Methods and Multiresolution proceed by first
constructing an MC mesh and then improving it through simpli-
fication [20] and/or remeshing [11, 29, 33, 28, 19]. Common mesh
simplification algorithms have large memory footprints [21, 15]
and are impractical for decimating meshes with millions of sam-
ples (see [35, 34] to address this issue). In addition, simplification
algorithms create irregular connectivity meshes with non-smooth
parameterizations. These cannot be compressed as efficiently as
semi-regular meshes [25] leading to the need for remeshing. In



Figure 2: Overview of our algorithm (left to right). Given a volume and a particular iso-value of interest a set of topologically faithful
ribbons is constructed. Stitching them gives the coarsest level mesh for the solver. Adaptive refinement constructs a better and better fit with
a semi-regular mesh.

contrast we wish to directly extract multiresolution meshes with a
smooth parameterization.

Alternatively multiresolution can be applied to the volume fol-
lowed by subsequent MC extractions [50, 2]. Unfortunately, it
is difficult to guarantee the topology of the mesh extracted from
the simplified volume, e.g., small handles will disappear at various
stages of the smoothing step, causing a change in the topology of
the extracted mesh (see [16] for a new solution). In contrast our
approach constructs a topologically accurate semi-regular mesh at
every stage of the algorithm.
Deformable Model Approaches define the surface as the min-
imum (thin-plate) energy solution induced by a suitable potential
function [40, 23, 38, 43, 28]. The second stage of our algorithm
proceeds similarly with the important distinction that we exert spe-
cific control over the connectivity of the mesh to achieve a semi-
regular structure and we use a balloon [5] approach coupled with
a novelreparameterizationforce. Similar to previous approaches
the initial mesh for our finite element solver must have the cor-
rect topology, however almost all previous approaches rely on user
input to determine the appropriate global topology for the initial
mesh [40, 43, 28, 38]. The largest advantage of our algorithm is
our ability to extract a surface of arbitrary topology without any
input from the user. Solvers which accommodate topological mod-
ifications are possible, but rather delicate [31, 39]. Instead we opt
for a robust algorithm whichautomaticallyextracts a surface with
the correct global topology from the volume datawithout recourse
to MC.
Topological Graphs can be constructed to encode the topology
of a surface. Our algorithm uses the adjacency relationships of the
voxels in the volume to traverse the surface and record its connec-
tivity in a graph that is topologically equivalent to the MC mesh for
the same volume. This traversal and graph construction is related to
work done by Lachaud [30] on topologically defined iso-surfaces.
However, unlike Lachaud we do not triangulate the entire graph.
Instead, our algorithm extracts a coarse mesh by eliminating redun-
dant regions of the graph where the topology does not change.
Morse Theory and Reeb Graphs are also concerned with cod-
ing the topology of a surface [47, 45, 46]. However, neither method
uniquely identifies the embedding of the surface in space, poten-
tially leading to ambiguities in the topology coding. Work done on
surface coding and Reeb graph construction by Shinagawa, using
contours defined by a height function, resolves these ambiguities
through requiring apriori knowledge [45, 46] of the number of han-
dles. In contrast the topological graph we construct from the con-
tours of the wavefront propagationuniquelydetermines the topol-
ogy of the surface withnoapriori information (for more details and
a proof see [53]).
Distance Iso-contours are critical in our approach. We use
ideas from level set methods on manifolds [26, 44] and discrete dis-
tance computations [32, 49]. Note that we compute these distances
on implicitly defined (through the volume) surfaces, not on meshes.
Specifically, we use the connectivity relationship of voxels in the
volume to build a graph representing the surface. Distances are
then propagated on this graph, creating a discrete distance graph.
Iso-distance contours in this graph are used to correctly encode the
topology of the surface without ever constructing an explicit mesh
as in the MC algorithm.

Signed Distance Volumes are required by our solver, though
the initial topology discovery stage runs on any volume with well-
defined iso-contours. A signed distance volume stores the shortest
signed distance to the surface at each voxel which is useful in a
variety of applications [7, 6, 17, 42, 51]. Distance volumes are
constructed by computing the shortest Euclidean distance within
a narrow band around the desired iso-contour and then sweeping
it out to the remaining voxels using a Fast Marching Method [44].
Distance volumes can easily be generated for a variety of input data.
For example, distance volumes for MRI and CT data are computed
by fitting a level set model to the desired iso-surface, creating a
smooth segmentation of the input data [37, 52].

2 Coarse Mesh Extraction

In order to construct a topologically accurate coarse representation
of a given iso-surface we slice the surface along contours that cap-
ture the overall topology. This concept is similar to representing a
surface with a Reeb graph, which uses contours defined by a height
function. The latter leads to ambiguities which we avoid by using
contours of a distance function definedon the iso-surface. Exam-
ining the way these geometric contours are connected, we can al-
ways uniquely encode a topological graph of the iso-surface. This
is achieved by discarding topologically redundant cross-sections,
i.e., those where surface topology can not change.

Background Before we explain the details of this approach,
recall some important theorems and definitions from Geometric
Topology [41]. First, the topology of a 2-manifoldM (closed poly-
hedral surface) is completely determined by its genus:

χ(M) = V − E + F = 2(1− g)

whereχ is the Euler characteristic,V the number of vertices,E the
number of edges,F the number of faces andg the genus. We use
this fact and two related theorems:
• the Euler characteristic of an entire polyhedron can be decom-

posed into the sum of the Euler characteristics of smaller regions
whose disjoint union is the polyhedron;

• the Euler characteristic of any given 2-manifold, or subset of a
2-manifold is invariant,regardless of how the surface is trian-
gulated.

Given these facts, it is easy to see that topology can be captured
accurately by selecting contours where the Euler characteristic of
the associated region will change the genus of the surface. This
selection is based on decomposing the surface into a combination
of a few simple primitives:

1-sphere: A 1-sphereJ is a set homeomorphic to a unit circle with
χ(J) = 0.

2-cell: A 2-cellD is a set homeomorphic to a disk withχ(D) = 1.

For example, we can decompose a sphere into two 1-spheres (con-
tours), two 2-cells (disks), and the triangulation between the two
contours (which we call aribbon) that respects the orientation of
the original surface (see Fig. 3). Consider the combined Euler char-
acteristic of these regions. As stated in the definitions, the Euler



characteristic of each of the two disks equals 1 while the Euler char-
acteristic of the contours equals 0. Given this, and since the genus
g of the sphere is 0, we deduce that the Euler characteristicχ of
this ribbon is 0. This type of decomposition gives a general way

Figure 3:On the left is a sphere decomposed into a ribbon and two
disks. On the right (top) is an-to-1 ribbon. On the right (bottom)
is the closed ribbon, making it homeomorphic to a sphere

to compute the Euler characteristic and thus the genus of a surface:
separate the surface into regions that either are redundant or impor-
tant with respect to the topology based on the Euler characteristic
of those regions. It is important to note that we do not compute the
Euler characteristic on a triangulated mesh and instead we rely on
the implicit representation of the surface in the volume data.

Volume Setting Specifically, consider an implied surface inter-
sected by a Cartesian grid. This intersection and the entire grid can
be represented by tuples(i, F (i)), wherei is a point in 3D space
andF (i) is the scalar value of the distance volume at that point
in space. Without loss of generality we assume that the surface is
the zero iso-contour of the volume. The surface will be pierced by
the edges and faces of the Cartesian grid, creating a collection of
patches each of which we denote as aSurfel, for surface element
(Fig. 4, left). The edges of the grid which pierce the surface are
denotedactive edges. Their endpoints lie on opposite sides of the
surface. Edge endpoints are considered either outside the surface if
F (i) ≥ 0, or inside the surface ifF (i) < 0, thus edge endpoint
cannot degenerately lieon the surface. The active edges intersect
the surface at points callednodes. For the case of an iso-surface
embedded in volume data, the resulting Surfel graph will be regu-
lar in the sense that all nodes are valence four. This Surfel graph is
never triangulated, only its connectivity information is used to build
the topological graph of the surface.

wavefront propagationno shared active edges

nn+1

E6

E10

E8
E4

E5

E12

E1E7
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E11

Figure 4: Dark grey arrows indicate how to follow active edges
from a given Surfel (left). On the right, the Surfel with distancen
will propagate across its active edges the distancen + 1 to con-
nected Surfels. Note that the other Surfel in this voxel will only
receive a distance when the wavefront reaches it.

Given this setting we return to the original goal of generating
slices to subsample the surface while retaining the original topol-
ogy. In order to code the Euler characteristic we traverse the Surfel
graph and establish connectivity relationships between all the re-
gions of the surface. Connectivity information is already implicitly
represented by voxel adjacency in the volume. The construction of
this graph has two parts. First we construct a distance tree, similar
to propagating a wavefront across a surface in the geodesic setting.

The frontier of the wavefront at any given distance will be a con-
tour that geometrically fits the surface. Next we augment the dis-
tance tree by establishing connectivity between Surfels of the same
distance, similar to constructing iso-contours for geodesics on the
underlying iso-surface.

2.1 Wavefront Propagation and Distance Tree
The first step in our approach is to construct a topological distance
tree by enumerating the Surfels through a wavefront-like propaga-
tion of Surfel distance. First consider the following graph represen-
tation of the surface:G is a graph, such that each vertexs ∈ G
is a Surfel andn ∈ G is 1-node adjacentto s if n shares a node
with s. The edges ofG are defined as the connections between
eachs ∈ G and its 1-node adjacent neighbors. The distance treeD
is induced by running Dijkstra’s algorithm onG starting from any
source Surfels, with edge weights all equal to one. This propagates
a distance1 to all Surfels and constructs a tree such that:
• Each Surfel is 1-node adjacent to its parent in the tree;

• The shortest distance from a Surfel to the root is the depth of the
Surfel in the tree hierarchy.

Surface Wavefront Propagation Any voxel that the surface
passes through can serve as the root Surfel of our distance tree.
From there, we construct the tree by enumerating the Surfels using
Dijkstra’s algorithm (Fig. 5, left). This propagation between adja-
cent Surfels can be done efficiently using active edges of the initial
Cartesian grid to determine Surfel neighbors. The distance tree re-
quires only a compact data structure and is represented by storing
an additional integer and pointer per Surfel for each voxel as indi-
cated by Figure 5(left). Each voxel typically has a single Surfel but
up to four Surfels may be associated with a single voxel. This is
of no consequence to the algorithm since we propagate the wave-
front only across active edges (Fig. 4). Ambiguities can arise when
using only the eight corners of a voxel to determine an ordering of
the active edges but are easily avoided by selecting one consistent
solution [3].

2.2 On-the-fly Construction of Topological Graph
The next step in the algorithm constructs a topological graph by
augmenting the distance tree. This is done by collecting Surfels of
the same distance into continuous ribbons, representing strips of the
surface topology. The process of linking ribbons requires that we
start with a given Surfel of distancen and traverse pairs of active
edges—facesof the voxel bounding the given Surfel—in an ordered
manner until we find another adjacent Surfel of the same distance
n. As the ribbon is traversed, we enumerate an in-ribbon ordering
for all the Surfels to assist in triangulation of the coarse mesh (see
Fig. 4).

Constructing Ribbons To construct a consistent ordering
within the ribbons, we use an idea very similar to work done on
encoding a digital region boundary [13] and digital surface track-
ing [18]. Since the edges of each Surfel are ordered (see Fig. 4),
a consistent traversal ordering can be established. For example,
as shown in figure 4, this Surfel could be identified as:{E1, E4,
E5}. During ribbon construction for the distancen, if this Surfel
is reached by crossing the active edge pair{E1, E4}, first the next
active edge pair{E4, E5} would be checked to see if the neighbor-
ing Surfel incident on this edge pair is the same distance. If it was
not, the next pair would then be checked. One of these neighboring
Surfels must be the same distance by definition of our wavefront
propagation. The predecessor of the present Surfel must have at
least one other successor which is 1-node adjacent to the present
Surfel. This process of linking neighboring Surfels is continued

1When we refer to Surfel distance, we mean the path distance associated
with the edges ofG, i.e. each Surfel is distance 1 from its 1-node adjacent
neighbors. This is a discrete, Surfel based distance.
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Figure 5:Small portion of the distance tree overlayed on some Sur-
fels (left). The Surfel labeled 0 is 1-node adjacent to all the Surfels
labeled 1 since it shares at least one grey node with each of them.
On the right is an example of 2-node adjacency between Surfels of
the same distance as required in ribbon construction.

until the initial Surfel of distancen is found, creating a continuous
contour of the surface.

For a given distancen, after a single ribbon is constructed, we
check to make sure that all the valid Surfels of distancen are part
of a ribbon. If not, the ribbon construction is restarted with one
of the unused Surfels at leveln. This process continues until all
Surfels are incorporated in the topological graph structure. Each
distinct ribbon of the same distance is assigned a distinct branch
name. Consequently, if there are multiple ribbons at leveln, they
will have unique branch names, either derived from their parent or
assigned uniquely for completely new branches.

Cleanup of Ribbons If distance is propagated na¨ıvely, ribbons
could have tails (Fig. 7). Tails are large or small dead-ends of the
wavefront. A dead-end of a wave front occurs when the wavefront
runs into itself. Tails do not provide additional topological infor-
mation [53] and are removed by pruning them from the distance
tree during distance propagation: if a voxel cannot propagate its
distance forward because all of its neighbors have already been vis-
ited, it is pruned from the distance tree.

The Topological Graph This construction guarantees that the
topological graph has particular properties. Specifically, our topo-
logical graph is a representation of all the Surfels such that:
• All of the properties of a distance tree hold;

• Every Surfel has 2-node adjacency with exactly two other Sur-
fels of the graph that are of the same distance and the same
branch number — i.e. they share an edge (see Fig. 5, right).

These criteria establish that our topological graph is essentially
composed of a collection of continuous contours of the surface.
The dual of these contours are homeomorphic to a 1-sphere and
combined with the root Surfel and leaf ribbons (homeomorphic to
2-cells), can be used to completely code the topology of the surface.

2.3 Coarse Mesh Construction
The topological graph provides everything needed to build the
coarse mesh. In order to have a good coarse sampling of the surface,
we only include the smallest number of ribbons necessary: Ribbons
essential for coding topology are those inducing topologicalevents.
A ribbon represents a topological event only if it contributes to a
change in the Euler characteristic of that region of the surface.

Ribbon Classification Consider the Euler characteristic of the
three types of ribbon adjacencies:

Endcaps: A root Surfel or a leaf ribbon: these are 2-cells with
χ = 1.

1-to-1 ribbon : The most common case for a ribbon comprised of
two connected 1-spheres withχ = 0 (by the same argument
used in section 2).

1-to-n ribbon (and vice-versa) : The regions of the surface that
represent a possible change in the topology. For these branch-
ings the Euler characteristic can be computed similar to the

1-to-1 ribbon case: close the different branches by endcaps to
get a topological sphere. Hence for 1-to-n ribbons (see Fig. 3)
we haveχ = 1− n.

For example, in a torus there would be one 1-to-2 ribbon where
the graph traversal first encounters the hole of the torus and one 2-
to-1 ribbon where the hole ends. Both of these events need to be
captured in order to construct the correct topology of the torus. In
contrast, the surface region between these two important events is a
sequence of adjacent 1-to-1 ribbons for each branch which can be
discarded without changing the topology of the surface.

Since these adjacency relationships are completely determined
by ribbon neighbors, ribbon constructionand event detection can
be performed in a sweep algorithm. Once the ribbons at leveln
are constructed, event detection is performed by walking along the
previous ribbons at leveln − 1 to see if an event ribbon was en-
countered. For example, for each of the Surfels in ribbons at level
n− 1, we check that their descendants have the same branch num-
ber. If not, a 1-to-n ribbon has been found. Likewise by keeping
track of the branch numbers already seen, an-to-1 ribbon can be
detected when different predecessor ribbons are connected to the
same descendant ribbon. Finally, if a ribbon has no valid descen-
dant ribbons, it is saved as an endcap.

Figure 6:1-to-n ribbon detection (n-to-1 ribbon detection is simi-
lar but inverted).

The desired coarseness of the mesh can be controlled by adding
criteria for ribbon selection. For example, consider a requirement
that the initial mesh exhibit good aspect ratio triangles. This can be
achieved by selecting ribbons at multiples of some integer distance
w and changing the sampling density within the ribbons to also be
of average distancew.

Figure 7: On the left is the the distance ribbons for the feline
dataset. The source Surfel is near the feline’s tail. On the right
is subsampling of the unmodified distance ribbons. There are two
visible tails on the left wing and on the nose.

Mesh Construction At this point, we have a list of all contours
of the surface which are required for tiling a good coarse approxi-
mation of the final surface. The final step of our algorithm is related
to contour stitching [1, 14, 12]. However, since we work within the



framework of the volume data we do not face the traditional cor-
respondence problems of contour stitching. Specifically, the vol-
ume data and the topological graph prevent ambiguities about inter-
contour connections.

Ribbon Subsampling and Shortest Distance Projection
The general procedure is to subsample each ribbon along its length
to convert it into a coarse contour of edges and vertices to be tri-
angulated with adjacent contours. Adjacent contours are connected
to one another by projecting ribbon samples to the next saved rib-
bon (see Figure 6). The projection step may result in samples being
too close or too far away from one another due to changes in the
geometry of the iso-surface. In this case we can adjust the number
of samples to accommodate the density change by snapping close
points together, or inserting a midpoint sample. The samples on
both contours are enumerated in corresponding order to facilitate
triangulation. Endcaps are evenly subsampled and connected to a
central point.

Stitching It is easy to tile two contours that have a one-to-one
correspondence in their sample enumeration. The general approach
of our algorithm is tobreakthe ribbons into one-to-one correspon-
dence and then use bridges between adjacent connected ribbons
to correctly model the topology of the surface. Thus 1-to-n rib-
bons andn-to-1 ribbons are conceptually handled by “breaking”
them inton pairs of 1-to-1 ribbons with conforming bridges be-
tween appropriate segments (Fig. 8). This is done by making a pass
around the larger ribbon to find if two neighboring samples have
been projected from different predecessor ribbons, in which case
they are stored to make the conforming bridge (Fig. 8). The follow-
ing pseudo code outlines the stitching algorithm:

For all saved ribbons
//process all m ribbons of distancen
If a ribbon is not sampled

evenly sample at intervals ofw Surfels
//else the ribbon may already be sampled from previous projection
For each sample of the current ribbons

Project down to next saved ribbons
//check the spacing for the new samples
For each Surfel of the child ribbons

If samples too close: snap to one sample
If samples too distant: insert a midpoint

allocate sample lists for breaking ribbons into 1-to-1
top-lists[m], bottom-lists[n]//n is the number of child ribbons
//put the current and projected samples into the appropriate lists
Traverse the current ribbon’s samples

If the current ribbon is a 1-to-n ribbon
branch = child sample’s branch number
Put the current sample in the top-list[branch]
Put the associated child sample in the bottom-list[branch]

Else if the current ribbon is an-to-1 ribbon
//same procedure but branch = current ribbons branch number

Triangulate the ordered samples of the corresponding top and bottom lists

//check for edges to make conforming bridge
If the current ribbon is a 1-to-n ribbon
Traverse the current ribbon’s samples

If two neighbor samples have children with different branch numbers
Store the samples until the corresponding pair is found

Triangulate the four samples to make the conforming bridge
Else if the current ribbon is an-to-1 ribbon
//same procedure but traverse the child ribbon’s samples

It is worth noting that there is a case equivalent to an-to-1 ribbon
immediately followed by a 1-to-m ribbon. Due to the discrete na-
ture of the samples this can appear as ann-to-m ribbon. This case
is easily identifiable and tagged in the event detection: two child
ribbons will have more than one parent in common. The previous
pseudo-code applies to this special case as well.

Branch 1 of Ring n
Branch 2 of Ring n

Conforming Bridge

Figure 8:Stitching example of an-to-1 ribbon.

2.4 Discussion
One of the benefits of this approach is the low memory overhead
for the topological graph representation. In the case of anO(n3)
volume the storage requirement for the distance tree is on average
O(n2), as it depends on the size of the surface. The only other
data that we need to store for generation of the coarse mesh is de-
pendent on the ribbons of the topological graph which is approxi-
matelyO(n). Memory overhead for ribbons is minimized by keep-
ing only, (i) the ribbons selected to be part of the coarse mesh; (ii)
the last ribbon constructed and (iii) the current ribbon, which is be-
ing evaluated for possible selection. Although both our algorithm
and MC use total storage ofO(n2) on average, our algorithm has a
more compact runtime footprint than a typical MC implementation.
In particular, a time efficient implementation of the MC algorithm
typically keeps information for all the voxels on the surface. This
requires storage of three float values associated with each edge in-
tersection (up to 36 floats per voxel) and three integers per face (up
to 12 integers per voxel). In contrast, our algorithm does not re-
quire such detailed storage and only requires one integer and one
pointer per voxel. Furthermore, we have presented the algorithm
as if a distance value is permanently stored for each Surfel. This is
only true conceptually, as distance values can be stored temporarily
and only for voxels on thefrontier region of the sweep. The frontier
region of the sweep is the region of the surface between the last rib-
bon selected to be a part of the mesh and the current ribbon being
evaluated. In addition, assuming that a subsequent simplification
is performed on the MC mesh, typical algorithms will use at least
an additional copy of the finest mesh and a sorted list of vertices,
resulting in an even larger memory footprint than our entire coarse
extraction routine.

3 Multi-Scale Force-based Solver
Once a coarse mesh with the correct topology is found, the next step
of the algorithm consists of turning this initial mesh into a hierar-
chical triangulation fitting the data with suitable sampling densities
and well shaped triangles. To solve for the iso-surface one may con-
sider the signed distance function of the volume as a potential field
and search for the minimum potential solution [24, 23, 22, 43, 38].
Unfortunately, this approach has a significant drawback: the trade-
off between closeness to the data and the smoothness of the solution
is hard to tune. In essence, smoothness of the solution and faithful-
ness to the desired goal surface compete with each other. Too much
regularization will lead to smooth, unfit surfaces, while not enough
regularization will lead to convergence difficulties. In both cases,
the overall speed and accuracy is very dependent on fine tuning of
parameters. This has been partially addressed by scheduling the
regularization as decreasing in time [22]. Such strategies help, but
still require careful tuning of parameters on a case by case basis.

The above approaches use the gradient of distance whose com-
putation is notoriously unstable, especially in the presence of noise.
For this reason we have chosen to use the distance itself. The cur-
rent mesh approximation locally inflates or deflates based on the
distance to the zero-contour. The direction of (local) motion of the
mesh is given by its local normal, while the magnitude (and sign)
of motion are determined by the distance function itself, similar
to [40]. This approach, inspired by work in image processing [5],



has already been used with success in the context of active implicit
surfaces [8, 51]. As a novel element we add a reparameterization
technique to control triangle shapes and their variation across the
surface. In this way, we obtain adaptive sampling and well shaped
triangles without introducing forces which compete with the inter-
polation constraints. Since the meshes are refined through adaptive
quadrisection we have a natural multiresolution structure which we
exploit directly for an efficient multiscale solver. Our setup gives
rise to a number of different force terms detailed below. Exter-
nal forces minimize the distance between the mesh and the zero-
contour of the data. Internal forces arise from the reparameteriza-
tion terms.

3.1 External Forces
We begin by considering the force acting on a single triangle be-
fore giving the actual equations for the net force on a vertex in the
mesh. Following the balloon strategy, we define the force acting on
a triangleT of our mesh as being along the normal of the triangle,
with a sign and a magnitude depending on the surface integral of
the distancesd between the triangle and the actual zero-contourC:

FT = nT/AT
∫
x∈T

d(x,C) dx

wherenT is the triangle normal andAT is the area ofT . The inte-
gral of the distance across the face can be computed exactly in the
volume setting, since we assume that the distance varies linearly
across a given voxel. In practice this is overkill and we use a much
cheaper sampling criterion. Each triangle face is randomly sampled
with a uniform distribution whose area density depends on the total
area of the triangle. First, however, we compute the variance of the
distance for a small number of uniform samples in order to short
circuit unnecessary sampling. This results in quicker force com-
putations, while preserving the quality of the approximation. Note
that the minimum bound on the discretization rate is of the order of
a voxel size, since everything is assumed to vary linearly within a
voxel. Therefore, we use the following simple sampling strategy:

Temporarily quadrisect the triangleT into four small trianglesti
For eachti

E[d] += di = DistanceAtBarycenter(ti)
E[d2] += (di)

2

mT = 4 //the number of samples
//calculate the varianceVT [d] of these distances
VT [d] =E[d2] - (E[d])2

If VT [d] ≥ δ
mT = AT /avf //avf = area of a voxel face
For eachmT
//stochastically sample the triangle with a uniform distribution
E[d] += DistanceAtRandomSample(T )

The variance of a discrete set of distances is computed in the stan-
dard wayVT [d] = E[d2] − E[d]2, whereE denotes the mean of
its argument. A more sophisticated method, using fully adaptive
sampling depending on variance, can be derived, but this simple
approach has proved sufficient and has the advantage of being very
efficient. The final net force on a triangle is be given by the above
mean of the distances

FT = nTE[d].

The solver requires forces acting on vertices. To arrive at these we
use the above sample points to compute integrals for each vertex
by integrating over all incident triangles, weighting each sample
point with its respective barycentric coordinate. Every sample point
within a triangle contributes to the force integrals associated with
its corner points as follows:

1/mT nT d(xi, C) φj(xi)
1/mT nT d(xi, C) φk(xi)
1/mT nT d(xi, C) φl(xi)

wherexi ∈ T is the sample location;(j, k, l) are the corners ofT ;
and theφ give the barycentric coordinate ofxi with respect toj, k,
andl respectively. Effectively we are using piecewise linear finite
elements and stochastic sampling to evaluate the associated inte-
grals. In the implementation we simply iterates over all triangles
and accumulates the integrals at each vertex.

With this scheme, faces will tend to move towards the zero-
contour. If the mesh is coarser than the small details of the zero-
contour, it will settle in an optimal position, smoothing the details.
The finer the mesh is, the better the fit will be. As mentioned in [23],
we also noticed that vertices tend to align with sharp features on the
zero-contour.

3.2 Internal Forces
Internal forces are usually added as a regularizing term, to guide the
minimization to a desirable local minimum. In our approach inter-
nal forces are mainly used to ensure good aspect ratios for the faces
and to keep the sampling across the surface smoothly distributed.
Usually, springs of zero rest length and identical stiffness are used
to keep sample points from clustering locally and ensure uniform
sampling [23]. Instead we definereparameterizationforces which
act similarly, but only along the local parameter plane, not in space.

Decoupling Smoothing and Reparameterization In re-
cent work on mesh smoothing [48, 9], the Laplacian operator has
been used extensively to denoise triangulated surfaces, using the
approximation:

L(xi) =
1

m

∑
j∈N1(i)

xj − xi,

wherexj are the neighbors of vertexxi, andm = #N1(i) is the
number of these neighbors (valence). Note that this definition is
equivalent to springs with zero rest length whenever the valence
is constant throughout the mesh. This Laplacian of the mesh at a
vertex can be broken down into two orthogonal components:

• a component normal to the surface, creatingshape smoothing

• and a component in the tangent plane, fairing theparameteriza-
tion of the mesh.

The normal vector to the surface can be found easily by normalizing
the curvature normal vectorK [9, 10]:

K(xi) =
1

2A
∑

j∈N1(i)

(cotαij + cotβij)(xi − xj). (1)

For arbitrary connectivity meshes numerical evidence shows that
no spurious drifting artifacts appear when the surface is modified
only in the direction ofK [9]. This decomposition into normal
and tangential components separates motion into one component
changing shape and one changing the parameterization. We are
only interested in the latter.

Reparameterization as Tangential Laplacian Smoothing
In our context shape smoothing would actagainst the external
forces trying to fit the initial data. Thus we are only interested in
the tangential motion of Laplacian smoothing in order to improve
the quality of the discretization. This reparameterization force is
defined as

T(xi) = L(xi)− (L(xi) · n)n, (2)

wheren is the normalizedK of Equ. 1. We also use the second
Laplacian operatorL2 [27, 9] to ensure a smoother variation of
sampling rate over the surface, and suppress the normal component
in the same way. By proceeding as described, we keep internal and
external forces distinct, thus simplifying parameter choices.



3.3 Refinement Strategy
After an optimal solution has been found for a given mesh, we eval-
uate a refinement criterion over each triangle. Any triangle failing
the criterion is quadrisected. This hierarchy is naturally maintained
in a forest of quadtrees, one tree for each original coarsest level
triangle. The solver is run anew after refinement.

The two criteria used to determine if a triangle should be re-
fined are curvature and variance of distance. If the variance of the
distance samples for a given triangle is too high, the surface un-
derneath this particular triangle must have high curvature, and the
triangle requires refinement. Using a user supplied thresholdεV all
trianglesT with VT [d] ≥ εV are refined.

Additionally we also test the curvature of the current mesh to en-
sure good discretization in highly curved areas. If the three vertices
of a triangle have too high a curvature compared to the area of the
triangle, our solver refines the triangle to better adapt to the local
geometry. For generality, we add a condition to deal with sharp
features in the volume data: we invalidate the test on curvature if
the variance of sampled distances is too small. Refinement will be
avoided if we are already describing the surface adequately. There-
fore, our second refinement criterion for a triangleT = (xi, xj, xk)
can be written:

(|K(xi)|+ |K(xj)|+ |K(xk)|)AT ≥ εκ and VT [d] ≥ εV
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whereεκ, the maximum discrete curvature, is a user-defined value.
The choice ofεV /10 seems reasonable in all our tests, but could be
defined by the user if needed, depending on the prevalence of high
frequency detail in the iso-surface. It is worth noting thatεV can
be viewed as a smoothing factor. For example if the user wants a
smoothed version of the surface they can setεV to a higher num-
ber and the system will stop after reaching a solution with fewer
triangles to approximate the surface.

3.4 Overall Solver Algorithm
Once forces have been computed for every vertex in the current
mesh, vertex positions are updated through an explicit dynamics
step:

x
(t+δt)
i = x

(t)
i + Fxiδt

advancing the mesh in time until the approximation error does not
decrease further. When advancing the mesh a restriction must be
placed on the time stepδt to satisfy the Courant condition: the
velocity of change must not travel faster than the minimum detail in
the system. This condition is simple to compute in our system and
asδt = me/Mf , whereme is the minimum edge length andMf

the maximum force. After a step is taken the refinement criteria are
evaluated and quadrisection is performed as needed. Subsequently
we solve again until convergence and continue this process until the
user supplied error criteria are satisfied.

The behavior of the solver is controlled by the relative weight-
ings of distance and reparameterization forces. We have found a
factor of 2 in favor of the distance forces to work reliably for a
wide variety of data sets. Similarly time steps ofδ = 0.1 and er-
ror thresholds ofεκ = 15 andεV = 10−4 have proven to work
well without the need for tuning. To make the error criteria scale
invariant we consider the object to occupy the unit cube.

4 Results
We have applied our algorithm to a variety of datasets and com-
pared the results with MC reconstructions as “ground truth.” Some
of these are shown in Figure 9.

The top sequence illustrates the case of a MRI dataset (1283)
which was segmented through a level set method. Construction of
the coarsest mesh (186 triangles) took.5 seconds. The intermediate

Figure 9: Reconstructions performed with our algorithm on MRI
datasets (top and bottom) and a 3D scanner generated distance
function (middle). The coarsest mesh is shown on the left followed
by an intermediate adaptive mesh and a final result.

mesh contains 4810 triangles, while the final mesh has 21360 tri-
angles. Using Metro [4] to compare our reconstruction against the
MC mesh (58684 triangles) we find a relativeL2 error of1.8∗10−4

(Fig. 10). The surface is a topological sphere, but requires fairly
fine levels of refinement near the ears, attesting to the performance
of our solver in the presence of rapidly changing local geometric
complexity.

Figure 10: Comparison between our algorithm output and a MC
mesh. The relativeL2 error between these is1.8 ∗ 10−4.

The middle sequence shows an extraction from a 3D scanner
generated distance function [7]. The topology of the feline is non-
trivial containing numerous handles in the tail region (Fig. 11) and
demonstrates the performance of our coarsest level mesh extraction
and topology discovery algorithm. It also demonstrates the ability
of our solver to resolve fairly fine detail such as the mounting posts
on the bottom of the paws. Triangle counts are 3412, 13412 and
46996 respectively (MC: 72685) for an error of3.3∗10−4 . Coarsest
mesh extraction time was.34 seconds on a volume of158∗74∗166
voxels.

Finally the bottom row shows another MRI dataset of a mouse



Figure 11:Tail section of feline showing nontrivial topology. MC
extraction on the right, adaptive semi-regular mesh on the left.

embryo which was segmented with a level set method. The sur-
face has several handles (near both front paws) and numerous
concavities. All were resolved successfully. Triangle counts are
1030, 4086, and 26208 respectively (MC: 129670) with an error of
6 ∗ 10−4. Coarsest level extraction took.78 seconds on a volume
of 256 ∗ 1282. Typical solver times are on the order of a few sec-
onds for the initial meshes increasing to 4 to 5 minutes for the final
reconstructions.

5 Conclusion and Future Work
We have demonstrated a novel algorithm for the capture of iso-
surfaces in the form of hierarchical, adaptive semi-regular meshes.
It is based on a new approach to construct a coarsest mesh with
guaranteed topology approximation of the iso-surface using surface
wavefront propagation to discover the topology and ensure that it is
represented faithfully. In a subsequent solver step, we use a novel
explicit reparameterization force employing tangential components
of the first and second Laplacian of the mesh. Thus we do not have
to trade off fidelity to the original data and uniqueness of the solu-
tion. The resulting meshes have a natural multiresolution structure
since they are semi-regular, making them suitable for a variety of
powerful digital geometry processing algorithms.

In order to avoid self-intersection problems during the solution
process we have so far relied on coarsest meshes which resolve
the geometry reasonably well to begin with. It would be desirable
to start with the coarsest possible (in the topological sense) initial
mesh and counteract any self-intersection problems in the solver
itself. Other interesting areas for future work include:
• investigation of the use of multiresolution representations of the

volume [16];

• optimization of the solver including adaptive time stepping
strategies and automatic selection of the relative weighting for
the reparameterization forces;

• application of the topological graph to irregular meshes to code
topology.
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Figure 1: Left: original mesh (3 floats/vertex). Middle: two stages of our algorithm. Right: normal mesh (1 float/vertex). (Skull dataset
courtesy Headus, Inc.)

Abstract

Normal meshes are new fundamental surface descriptions inspired
by differential geometry. A normal mesh is a multiresolution mesh
where each level can be written as a normal offset from a coarser
version. Hence the mesh can be stored with a single float per ver-
tex. We present an algorithm to approximate any surface arbitrarily
closely with a normal semi-regular mesh. Normal meshes can be
useful in numerous applications such as compression, filtering, ren-
dering, texturing, and modeling.

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computa-

tional Geometry and Object Modeling - curve, surface, solid, and object representa-

tions; hierarchy and geometric transformations; G.1.2 [Numerical Analysis]: Ap-

proximation - approximation of surfaces and contours, wavelets and fractals

Additional Keywords: Meshes, subdivision, irregular connectivity, surface parame-

terization, multiresolution, wavelets.

1 Introduction

The standard way to parameterize a surface involves three scalar
functions x(u, v), y(u, v), z(u, v). Yet differential geometry
teaches us that smooth surfaces locally can be described by a single
scalar height function over the tangent plane. Loosely speaking one
can say that the geometric information of a surface can be contained

in only a single dimension, the height over this plane. This obser-
vation holds infinitesimally; only special cases such as terrains and
star-shaped surfaces can globally be described with a single func-
tion.

In practice we often approximate surfaces using a triangle mesh.
While describing meshes is relatively easy, they have lost much
of the structure inherent in the original surface. For example, the
above observation that locally a surface can be characterized by a
scalar function is not reflected in the fact that we store 3 floats per
vertex. In other words, the correlation between neighboring sample
locations implied by the smoothness assumption is not reflected,
leading to an inherently redundant representation.

While vertex locations come as 3-dimensional quantities, the
above considerations tell us that locally two of those dimensions
represent parametric information and only the third captures geo-
metric, or shape, information. For a given smooth shape one may
choose different parameterizations, yet the geometry remains the
same. In the case of a mesh we can observe this by noticing that
infinitesimal tangential motion of a vertex does not change the ge-
ometry, only the sampling pattern, or parameterization. Moving in
the normal direction on the other hand changes the geometry and
leaves parameter information undisturbed.

1.1 Goals and Contributions
Based on the above observations, the aim of the present paper is to
compute mesh representations that only require a single scalar per
vertex. We call such representations normal meshes. The main in-
sight is that this can be done using multiresolution and local frames.
A normal mesh has a hierarchical representation so that all detail
coefficients when expressed in local frames are scalar, i.e., they only
have a normal component. In the context of compression, for ex-
ample, this implies that parameter information can be perfectly pre-
dicted and residual error is entirely constrained to the normal direc-
tion, i.e., contains only geometric information. Note that because
of the local frames normal mesh representations are non-linear.

Of course we cannot expect a given arbitrary input mesh to pos-
sess a hierarchical representation which is normal. Instead we de-



scribe an algorithm which takes an arbitrary topology input mesh
and produces a semi-regular normal mesh describing the same ge-
ometry. Aside from a small amount of base domain information,
our normal mesh transform converts an arbitrary mesh from a 3
parameter representation into a purely scalar representation. We
demonstrate our algorithm by applying it to a number of models
and experimentally characterize some of the properties which make
normal meshes so attractive for computations.

The study of normal meshes is of interest for a number of rea-
sons: they
• bring our computational representations back towards the “first

principles” of differential geometry;

• are very storage and bandwidth efficient, describing a surface
as a succinctly specified base shape plus a hierarchical normal
map;

• are an excellent representation for compression since all vari-
ance is “squeezed” into a single dimension.

1.2 Related Work
Efficient representations for irregular connectivity meshes have
been pursued by a number of researchers. This research is mo-
tivated by our ability to acquire densely sampled, highly detailed
scans of real world objects [19] and the need to manipulate these ef-
ficiently. Semi-regular—or subdivision connectivity—meshes offer
many advantages over the irregular setting due of their well devel-
oped mathematical foundations and data structure simplicity [23];
many powerful algorithms require their input to be in semi-regular
form [21, 22, 25, 1]. This has led to the development of a number
of algorithms to convert existing irregular meshes to semi-regular
form through remeshing. Eck et al. [9] use Voronoi tiling and har-
monic maps to build a parameterization and remesh onto a semi-
regular mesh. Krischnamurthy and Levoy [15] demonstrated user
driven remeshing for the case of bi-cubic patches, while Lee et
al. [18] proposed an algorithm based on feature driven mesh reduc-
tion to develop smooth parameterizations of meshes in an automatic
fashion. These methods use the parameterization subsequently for
semi-regular remeshing.

Our work is related to these approaches in that we also construct
a semi-regular mesh from an arbitrary connectivity input mesh.
However, in previous work prediction residuals, or detail vectors,
were not optimized to have properties such as normality. The main
focus was on the establishment of a smooth parameterization which
was then semi-regularly sampled.

The discussion of parameter versus geometry information orig-
inates in the work done on irregular curve and surface subdivi-
sion [4] [13] and intrinsic curvature normal flow [5]. There it is
shown that unless one has the correct parameter side information,
it is not possible to build an irregular smooth subdivision scheme.
While such schemes are useful for editing and texturing applica-
tions, they cannot be used for succinct representations because the
parameter side-information needed is excessive. In the case of nor-
mal meshes these issues are entirely circumvented in that all pa-
rameter information vanishes and the mesh is reduced to purely ge-
ometric, i.e., scalar in the normal direction, information.

Finally, we mention the connection to displacement maps [3],
and in particular normal displacement maps. These are popular
for modeling purposes and used extensively in high end render-
ing systems such as RenderMan. In a sense we are solving here
the associated inverse problem. Given some geometry, find a sim-
pler geometry and a set of normal displacements which together are
equivalent to the original geometry. Typically, normal displacement
maps are single level, whereas we aim to build them in a fully hi-
erarchical way. For example, single level displacements maps were
used in [15] to capture the fine detail of a 3D photography model.
Cohen et al. [2] sampled normal fields of geometry and maintained

these in texture maps during simplification. While these approaches
all differ significantly from our interests here, it is clear that maps
of this and related nature are of great interest in many contexts.

In independent work, Lee et al. pursue a goal similar to ours [17].
They introduce displaced subdivision surfaces which can be seen as
a two level normal mesh. Because only two levels are used, the base
domain typically contains more triangles than in our case. Also the
normal offsets are oversampled while in our case, the normal offsets
are critically sampled.

2 Normal Polylines
Before we look at surfaces and normal meshes, we introduce some
of the concepts using curves and normal polylines. A curve in
the plane is described by a pair of parametric functions s(t) =
(x(t), y(t))with t ∈ [0, 1]. We would like to describe the points on
the curve with a single scalar function. In practice one uses poly-
lines to approximate the function. Let l(p,p′) be the linear segment
between the points p and p′. A standard way to build a polyline
multiresolution approximation is to sample the curve at points sj,k
where sj,k = sj+1,2k and define the jth level approximation as

Lj =
⋃

0≤k<2j
l(sj,k, sj,k+1).

To move from Lj to Lj+1 we need to insert the points sj+1,2k+1
(Figure 2, left). Clearly this requires two scalars: the two coordi-
nates of sj+1,2k+1. Alternatively one could compute the difference
sj+1,2k+1 −m between the new point and some predicted point
m, say the midpoint of the neighboring points sj,k and sj,k+1.
This detail has a tangential component m − b and a normal com-
ponent b − sj+1,2k+1. The normal component is the geometric
information while the tangential component is the parameter infor-
mation. The way to build polylines that can be described with one
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Figure 2: Removing one point sj+1,2k+1 in a polyline multiresolu-
tion and recording the difference with the midpointm. On the left a
general polyline where the detail has both a normal and a tangen-
tial component. On the right a normal polyline where the detail is
purely normal.

scalar per point, is to make sure that the parameter information is
always zero, i.e., b = m, see Figure 2, right. If the triangle sj,k,
sj+1,2k+1, sj,k+1 is Isosceles, there is no parameter information.
Consequently we say that a polyline is normal if a multiresolution
structure exists where every removed point forms an Isosceles trian-
gle with its neighbors. Then there is zero parameter information and
the polyline can be represented with one scalar per point, namely
the normal component of the associated detail.

For a general polyline the removed triangles are hardly ever ex-
actly Isosceles and hence the polyline is not normal. Below we
describe a procedure to build a normal polyline approximation for
any continuous curve. The easiest is to start building Isosceles tri-
angles from the coarsest level. Start with the first base l(s0,0, s0,1),
see Figure 3. Next take its midpoint and check where the normal
direction crosses the curve. Because the curve is continuous, there
has to be at least one such point. If there are multiple pick any one.



3,3

0,0 0,1

1,1
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Figure 3: Construction of a normal polyline. We start with the
coarsest level and each time check where the normal to the midpoint
crosses the curve. For simplicity only the indices of the sj,k points
are shown and only certain segments are subdivided. The polyline
(0, 0)−(2, 1)−(3, 3)−(1, 1)−(0, 1) is determined by its endpoints
and three scalars, the heights of the Isosceles triangles.

Call this point s1,1 and define the first triangle. Now split the curve
into two parts and repeat the procedure on each subcurve. Each
time sj+1,2k+1 is found where the normal to the midpoint of sj,k
and sj,k+1 crosses the portion of the curve between sj,k and sj,k+1.
Thus any continuous curve can be approximated arbitrarily closely
with a normal polyline. The result is a series of polylines Lj all of
which are normal with respect to midpoint prediction. Effectively
each level is parameterized with respect to the one coarser level.
Because the polylines are normal, only a single scalar value, the
normal component, needs to be recorded for each point. We have a
polyline with no parameter information.

One can also consider normal polylines with respect to fancier
predictors. For example one could compute a base point and nor-
mal estimate using the well known 4 point rule. Essentially any
predictor which only depends on the coarser level is allowed. For
example one can also use irregular schemes [4]. Also one does not
need to follow the standard way of building levels by downsam-
pling every other point, but instead could take any ordering. This
leads to the following definition of a normal polyline:

Definition 1 A polyline is normal if a removal order of the points
exists such that each removed point lies in the normal direction from
a base point, where the normal direction and base point only de-
pend on the remaining points.

Hence a normal polyline is completely determined by a scalar com-
ponent per vertex.

Normal polylines are closely related to certain well known frac-
tal curves such as the Koch Snowflake1, see Figure 4. Here each
time a line segment is divided into three subsegments. The left and
right get a normal coefficient of zero, while the middle receives
a normal coefficient such that the resulting triangle is equilateral.
Hence the polylines leading to the snowflake are normal with re-
spect to midpoint subdivision.

Figure 4: Four normal polylines converging to the Koch snowflake.

1Niels Fabian Helge von Koch (Sweden, 1870-1924)

There is also a close connection with wavelets. The normal co-
efficients can be seen as a piecewise linear wavelet transform of
the original curve. Because the tangential components are always
zero there are half as many wavelet coefficients as there are origi-
nal scalar coefficients. Thus one saves 50% memory right away. In
addition of course the wavelets have their usual decorrelation prop-
erties. In the functional case the above transform corresponds to an
unlifted interpolating piecewise linear wavelet transform as intro-
duced by Donoho [6]. There it is shown that interpolating wavelets
with no primal, but many dual moments are well suited for smooth
functions. Unlike in the function setting, not all wavelets from the
same level j have the same physical scale. Here the scale of each
coefficient is essentially the length of the base of its Isosecles trian-
gle.

3 Normal Meshes

We begin by establishing terminology. A triangle mesh M is a
pair (P,K), where P is a set of N point positions P = {pi =
(xi, yi, zi) ∈ R3 | 1 ≤ i ≤ N}, and K is an abstract simplicial
complex which contains all the topological, i.e., adjacency infor-
mation. The complex K is a set of subsets of {1, . . . , N}. These
subsets come in three types: vertices {i}, edges {i, j}, and faces
{i, j, k}. Two vertices i and j are neighbors if {i, j} ∈ E . The
1-ring neighbors of a vertex i form a set V(i) = {j | {i, j} ∈ E}.

We can derive a definition of normal triangle meshes inspired
by the curve case. Consider a hierarchy of triangle meshes Mj
built using mesh simplification with vertex removals. These meshes
are nested in the sense that Pj ⊂ Pj+1. Take a removed vertex
pi ∈ Pj+1 \ Pj . For the mesh to be normal we need to be able to
find a base point b and normal directionN that only depend on Pj ,
so that pi − b lies in the direction N . This leads to the following
definition.

Definition 2 A mesh M is normal in case a sequence of vertex
removals exists so that each removed vertex lies on a line defined
by a base point and normal direction which only depends on the
remaining vertices.

Thus a normal mesh can be described by a small base domain and
one scalar coefficient per vertex.

As in the curve case, a mesh is in general not normal. The chance
that the difference between a removed point and a predicted base
point lies exactly in a direction that only depends on the remaining
vertices is essentially zero. Hence the only way to obtain a normal
mesh is to change the triangulation. We decide to use semi-regular
meshes, i.e., meshes whose connectivity is formed by successive
quadrisection of coarse base domain faces.

As in the curve setting, the way to build a normal mesh is to
start from the coarse level or base domain. For each new vertex we
compute a base point as well as a normal direction and check where
the line defined by the base point and normal intersects the surface.
The situation, however, is much more complex than in the curve
case for two reasons: (1) There could be no intersection point. (2)
There could be many intersection points, but only one correct one.

In case there are no intersection points, strictly speaking no fully
normal mesh can be built from this base domain. If that happens,
we relax the definition of normal meshes some and allow a small
number of cases where the new points do not lie in the normal di-
rection. Thus the algorithm needs to find a suitable non-normal lo-
cation for the new point. In case there are many intersection points
the algorithm needs to figure out which one is the right one. If the
wrong one is chosen the normal mesh will start folding over itself
or leave creases. Any algorithm which blindly picks an intersection
point is doomed.



Parameterization In order to find the right piercing point or
suggest a good alternate, one needs to be able to easily navigate
around the surface. The way to do this is to build a smooth pa-
rameterization of the surface region of interest. This is a basic
building block of our algorithm. Several parameterization meth-
ods have been proposed and our method takes components from
each of them: mesh simplification and polar maps from MAPS [18],
patchwise relaxation from [9], and a specific smoothness functional
similar to the one used in [10] and [20]. The algorithm will use lo-
cal parameterizations which need to be computed fast and robustly.
Most of them are temporary and are quickly discarded unless they
can be used as a starting guess for another parameterization.

Consider a region R of the mesh homeomorphic to a disc that
we want to parameterize onto a convex planar region B, i.e., find a
bijective map u : R → B. The map u is fixed by a boundary con-
dition ∂R → ∂B and minimizes a certain energy functional. Sev-
eral functionals can be used leading to, e.g., conformal or harmonic
mappings. We take an approach based on the work of Floater [10].
In short, the function u needs to satisfy the following equation in
the interior:

u(pi) =
∑

k∈V(i)

αiku(pk), (1)

where V(i) is the 1-ring neighborhood of the vertex i and the
weights αik come from the shape-preserving parameterization
scheme [10]. The main advantage of the Floater weights is that
they are always positive, which, combined with the convexity of
the parametric region, guarantees that no triangle flipping can oc-
cur within the parametric domain. This is crucial for our algorithm.
Note that this is not true in general for harmonic maps which can
have negative weights. We use the iterative biconjugate gradient
method [12] to obtain the solution to the system (1). Given that we
often have a good starting guess this converges quickly.

Algorithm Our algorithm consists of 7 stages which are de-
scribed below, some of which are shown for the molecule model
in Figure 5. The molecule is a highly detailed and curved model.
Any naive procedure for finding normal meshes is very unlikely to
succeed.

The first four stages of the algorithm prepare the ground for the
piercing procedure and build the net of curves splitting the original
mesh into triangular patches that are in one-to-one correspondence
with the faces of the base mesh, i.e., the coarsest level of the semi-
regular mesh we build.

1. Mesh simplification: We use the Garland-Heckbert [11]
simplification based on half-edge collapses to create a mesh hierar-
chy (Pj,Kj). We use the coarsest level (P0,K0) as an initial guess
for our base domain (Q0,K0). The first image of Figure 5 shows
the base domain for the molecule.

2. Building an initial net of curves: The purpose of this step
is to connect the vertices of the base domain with a net of non in-
tersecting curves on the different levels of the mesh simplification
hierarchy. This can easily be done using the MAPS parameteri-
zation [18]. MAPS uses polar maps to build a bijection between a
1-ring and its retriangulation after the center vertex is removed. The
concatenation of these maps is a bijective mapping between differ-
ent levels (Pj,Kj) in the hierarchy. The desired curves are simply
the image of the base domain edges under this mapping. Because
of the bijection no intersection can occur. Note that the curves start
and finish at a vertex of the base domain, but need not follow the
edges of the finer triangulation, i.e., they can cut across triangles.
These curves define a network of triangular shaped patches corre-
sponding to the base domain triangles. Later we will adjust these
curves on some intermediate level and again use MAPS to propa-
gate these changes to other levels. The top middle image of Figure 5
shows these curves for some intermediate level of the hierarchy.

3. Fixing the global vertices: A normal mesh is almost com-
pletely determined by the base domain. One has to choose the base
domain vertices Q0 very carefully to reduce the number of non-
normal vertices to a minimum. The coarsest level of the mesh sim-
plification P0 is only a first guess. In this section we describe a
procedure for repositioning the global vertices qi with {i} ∈ K0.
We impose the constraint that the qi needs to coincide with some
vertex pk of the original mesh, but not necessarily pi.

The repositioning is typically done on some intermediate level j.
Take a base domain vertex qi. We build a parameterization from
the patches incident to vertex qi to a disk in the plane, see Fig-
ure 6. Boundary conditions are assigned using arclength parame-
terization, and parameter coordinates are iteratively computed for
each level j vertex inside the shaded region. It is now easy to re-
place the point qi with any level point fromPj in the shaded region.
In particular we let the new q′i be the point of Pj that in the param-
eter domain is closest to the center of the disk. The exact center of
the disk, in general, does not correspond to a vertex of the mesh.

Once a new position q′i is chosen, the curves can be redrawn by
taking the inverse mapping of straight lines from the new point in
the parameter plane. One can keep iterating this procedure, but we
found that if suffices to cycle once through all base domain vertices.

We also provide for a user controlled repositioning. Then the
user can replace the center vertex with any Pj point in the shaded
region. The algorithm again uses the parameterization to recompute
the curves from that point.

The top right of Figure 5 shows the repositioned vertices. Notice
how some of them like the rightmost one have moved considerably.
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Figure 6: Base domain vertex repositioning. Left: original patches
around qi, middle: parameter domain, right: repositioned qi and
new patch boundaries. This is replaced with the vertex whose pa-
rameter coordinate are the closest to the center. The inverse map-
ping (right) is used to find the new position q′i and the new curves.

4. Fixing the global edges: The image of the global edges
on the finest level will later be the patch boundaries of the normal
mesh. For this reason we need to improve the smoothness of the as-
sociated curves at the finest level. We use a procedure similar to [9].
For each base domain edge {i, k}we consider the region formed on
the finest level mesh by its two incident patches. Let l andm be the
opposing global vertices. We then compute a parameter function
ρ within the diamond-shaped region of the surface. The boundary
condition is set as ρ(qi) = ρ(qk) = 0, ρ(ql) = 1, ρ(qm) = −1,
with linear variation along the edges. We then compute the param-
eterization and let its zero level set be our new curve. Again one
could iterate this procedure till convergence but in practice one cy-
cle suffices. The curves of the top right image in Figure 5 are the
result of the curve smoothing on the finest level.

Note that a similar result can be achieved by allowing the user to
position the global vertices and draw the boundaries of the patches
manually. Indeed, the following steps of the algorithm do not de-
pend on how the initial net of surface curves is produced.



Figure 5: The entire procedure shown for the molecule model. 1. Base domain. 2. Initial set of curves. 3. Global vertex repositioning 4.
Initial Parameterization 5. Adjusting parameterization 6. Final normal mesh. (HIV protease surface model courtesy of Arthur Olson, The
Scripps Research Institute)

5. Initial parameterization: Once the global vertices and
edges are fixed, one can start filling in the interior. This is done
by computing the parameterization of each patch to a triangle while
keeping the boundary fixed. The parameter coordinates from the
last stage can serve as a good initial guess. We now have a smooth
global parameterization. This parameterization is shown in the bot-
tom left of Figure 5. Each triangle is given a triangular checker-
board texture to illustrate the parameterization.

6. Piercing: In this stage of the algorithm we start building
the actual normal mesh. The canonical step is for a new vertex of
the semi-regular mesh to find its position on the original mesh. In
quadrisection every edge of level j generates a new vertex on level
j + 1. We first compute a base point using interpolating Butter-
fly subdivision [8] [24] as well as an approximation of the normal.
This defines a straight line. This line may have multiple intersec-
tion points in which case we need to find the right one, or it could
have none, in which case we need to come up with a good alternate.

Suppose that we need to produce the new vertex q that lies
halfway along the edge {a, c} with incident triangles {a, c,b} and
{c, a,d}, see Figure 7. Let the two incident patches form the re-
gion R.

Build the straight line L defined by the base point s predicted by
the Butterfly subdivision rule [24] and the direction of the normal
computed from the coarser level points. We find all the intersection
points of L with the regionR by checking all triangles inside.

If there is no intersection we take the point v that lies midway
between the points a and c in the parameter domain: u(v) =
(u(a) + u(c))/2. This is the same point a standard parameteri-
zation based remesher would use. Note that in this case the detail
vector is non-normal and its three components need to be stored.

In the case when there exist several intersections of the mesh re-
gion R with the piercing line L we choose the intersection point
that is closest to the point u(v) in the parameter domain. Let us
denote by u(q) the parametric coordinates of that piercing point.
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Figure 7: Upper left: piercing, the Butterfly point is s, the surface is
pierced at the point q, the parametrically suggested point v lies on
the curve separating two regions of the mesh. Right: parameter do-
main, the pierced point falls inside the aperture and gets accepted.
Lower left: the parameterization is adjusted to let the curve pass
through q.

We accept this point as a valid point of the semi-regular mesh if
‖u(q) − u(v)‖ < κ‖u(a) − u(v)‖, where κ is an “aperture” pa-
rameter that specifies how much the parameter value of a pierced



point is allowed to deviate from the center of the diamond. Oth-
erwise, the piercing point is rejected and the mesh takes the point
with the parameter value u(v), resulting in a non-normal detail.

7. Adjusting the parameterization: Once we have a new
piercing point, we need to adjust the parameterization to reflect this.
Essentially, the adjusted parameterization u should be such that the
piercing point has the parameters u(v) =: u(q). When impos-
ing such an isolated point constraint on the parameterization, there
is no mathematical guarantee against flipping. Hence we draw a
new piecewise linear curve through u(q) in the parameter domain.
This gives a new curve on the surface which passes through q, see
Figure 7. We then recompute the parameterization for each of the
patches onto a triangle separately. We use a piecewise linear bound-
ary condition with the half point at q on the common edge.

When all the new midpoints for the edges of a face of level j
are computed, we can build the faces of level j + 1. This is done
by drawing three new curves inside the corresponding region of the
original mesh, see Figure 8. Before that operation happens we need
to ensure that a valid parameterization is available within the patch.
The patch is parameterized onto a triangle with three piecewise lin-
ear boundary conditions each time putting the new points at the
midpoint. Then the new points are connected in the parameter do-
main which allows us to draw new finer level curves on the original
mesh. This produces a metamesh similar to [16], so that the new
net of curves replicates the structure of the semi-regular hierarchy
on the surface of the original. The construction of the semi-regular
mesh can be done adaptively with the error driven procedure from
MAPS [18]. An example of parameterization adjustment after two
levels of adaptive subdivision is shown in the bottom middle of Fig-
ure 5. Note that as the regions for which we compute parameteriza-
tions become smaller, the starting guesses are better and the solver
convergence becomes faster and faster.

a b

c u(a) u(c)

u(b)

Figure 8: Face split: Quadrisection in the parameter plane (left)
leads to three new curves within the triangular patch (right).

The aperture parameter κ of the piercing procedure provides
control over how much of the original parameterization is preserved
in the final mesh and consequently, how many non-normal details
will appear. At κ = 0 we build a non-normal mesh entirely based
on the original global parameterization. At κ = 1 we attempt to
build a purely normal mesh independent of the parameterization.
In our experience, the best results were achieved when the aper-
ture was set low (0.2) at the coarsest levels, and then increased to
0.6 on finer levels. On the very fine levels of the hierarchy, where
the geometry of the semi-regular meshes closely follows the origi-
nal geometry, one can often simply use a naive piercing procedure
without parameter adjustment.

One may wonder if the continuous readjustment of parameteri-
zations is really necessary. We have tried the naive piercing pro-
cedure without parameterization from the base domain and found
that it typically fails on all models. An example is Figure 9 which
shows 4 levels of naive piercing for the torus starting from a 102
vertex base mesh. Clearly, there are several regions with flipped
and self-intersecting triangles. The error is about 20 times larger
than the true normal mesh.

Figure 9: Naive piercing procedure. Clearly, several regions have
flipped triangles and are self-intersecting.

Dataset Size Base Normal Not normal % L2 Time
mesh size (%) error (min)

Feline 49864 156 40346 729 (1.8%) .015 4
Molecule 10028 37 9521 270 (2.8%) .075 1.5
Rabbit 16760 33 8235 196 (2.4%) .037 2
Torus3 5884 98 5294 421 (8.0%) .03 3
Skull 20002 112 25376 817 (3.2%) .02 2.5
Horse 48485 234 59319 644 (1.1%) .004 6.8

Table 1: Summary of normal meshing results for different models.
The normal mesh is computed adaptively and contains roughly the
same number of triangles as the original mesh. The relative L2

errors are computed with the I.E.I.-CNR Metro tool. The times are
reported on a 700MHz Pentium III machine.

4 Results
We have implemented the algorithms described in the preceding
section, and performed a series of experiments in which normal
meshes for various models were built. The summary of the results
is given in Table 1. As we can see from the table, the normal semi-
regular meshes have very high accuracy and hardly any non normal
details.

One interesting feature of our normal meshing procedure is the
following: while the structure of patches comes from performing
simplification there are far fewer restrictions on how coarse the
base mesh can be. Note for example that the skull in Figure 1 was
meshed with the tetrahedron as base mesh. This is largely due to
the robust mesh parameterization techniques used in our approach.

Figure 10 shows normal meshes for rabbit, torus, feline, and
skull, as well as close-up of feline (bottom left) normal mesh. Note
how smooth the meshes are across global edges and global vertices.
This smoothness mostly comes from the normality, not the param-
eterization. It is thus an intrinsic quantity.

One of the most interesting observations coming from this work
is that locally the normal meshes do not differ much from the non-
normal ones, while offering huge benefits in terms of efficiency of
representation. For example, Table 2 shows how the “aperture pa-
rameter” κ that governs the construction of normal meshes affects
the number of detail coefficients with non-trivial tangential com-
ponents for the model of the three hole torus (these numbers are
typical for other models as well). In particular, we see that already
a very modest acceptance strategy (κ = 0.2) gets rid of more than
90% of the tangential components in the remeshed model, and the
more aggressive strategies offer even more benefits without affect-
ing the error of the representation.

5 Summary and Conclusion
In this paper we introduce the notion of normal meshes. Normal
meshes are multiresolution meshes in which vertices can be found
in the normal direction, starting from some coarse level. Hence
only one scalar per vertex needs to be stored. We presented a robust



κ normal error (10−4)

0 0% 1.02
0.2 91.9% 1.05
0.4 92.4% 1.04

best 98.3% 1.02

Table 2: The relation between the acceptance strategy during the
piercing procedure and the percentage of perfectly normal details
in the hierarchy. The original model has 5884 vertices, all the nor-
mal meshes have 26002 vertices (4 levels uniformly), and the base
mesh contained 98 vertices. The best strategy in the last line used
κ = 0.2 on the first three levels and afterward always accepted the
piercing candidates.

algorithm for computing normal semi-regular meshes of any input
mesh and showed that it produces very smooth triangulations on a
variety of input models.

It is clear that normal meshes have numerous applications. We
briefly discuss a few.
Compression Usually a wavelet transform of a standard mesh
has three components which need to be quantized and encoded. In-
formation theory tells us that the more non uniform the distribution
of the coefficients the lower the first order entropy. Having 2/3 of
the coefficients exactly zero will further reduce the bit budget. From
an implementation viewpoint, we can almost directly hook the nor-
mal mesh coefficients up to the best known scalar wavelet image
compression code.
Filtering It has been shown that operations such as smoothing,
enhancement, and denoising can be computed through a suitable
scaling of wavelet coefficients [7]. In a normal mesh any such al-
gorithm will require only 1/3 as many computations. Also large
scaling coefficients in a standard mesh will introduce large tangen-
tial components leading to flipped triangles. In a normal mesh this
is much less likely to happen.
Texturing Normal semi-regular meshes are very smooth inside
patches, across global edges, and around global vertices even when
the base domain is exceedingly coarse, cf. the skull model. The im-
plied parameterizations are highly suitable for all types of mapping
applications.
Rendering Normal maps are a very powerful tool for decora-
tion and enhancement of otherwise smooth geometry. In particular
in the context of bandwidth bottlenecks it is attractive to be able to
download a normal map into hardware and only send smooth co-
efficient updates for the underlying geometry. The normal mesh
transform effectively solves the associated inverse problem: con-
struct a normal map for a given geometry.

The concept of normal meshes opens up many new areas of re-
search.
• Our algorithm uses interpolating subdivision to find the base

point. Building normal meshes with respect to approximating
subdivision is not straightforward.

• The theoretical underpinnings of normal meshes need to be
studied. Do continuous variable normal descriptions of surfaces
exist? What about stability? What about connections with cur-
vature normal flow which acts to reduce normal information?

• We only addressed semi-regular normal meshes here, while the
definition allows for the more flexible setting of progressive ir-
regular mesh hierarchies.

• Purely scalar compression schemes for geometry need to be
compared with existing coders.

• Generalize normal meshes to higher dimensions. It should be
possible to represent a M dimensional manifold in N dimen-
sions with N −M variables as opposed to the usual N .

• The current implementation only works for surfaces without
boundaries and does not deal with feature curves. We will ad-
dress these issues in our future research.
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[20] LÉVY, B., AND MALLET, J. Non-Distorted Texture Mapping for Sheared Tri-
angulated Meshes. Proceedings of SIGGRAPH 98 (1998), 343–352.

[21] LOUNSBERY, M., DEROSE, T. D., AND WARREN, J. Multiresolution Analysis
for Surfaces of Arbitrary Topological Type. ACM Transactions on Graphics 16, 1
(1997), 34–73. Originally available as TR-93-10-05, October, 1993, Department
of Computer Science and Engineering, University of Washington.
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[23] ZORIN, D., AND SCHRÖDER, P., Eds. Subdivision for Modeling and Animation.
Course Notes. ACM SIGGRAPH, 1999.
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Topological Noise Removal
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Abstract
Meshes obtained from laser scanner data often contain

topological noise due to inaccuracies in the scanning and
merging process. This topological noise complicates sub-
sequent operations such as remeshing, parameterization
and smoothing. We introduce an approach that removes
unnecessary nontrivial topology from meshes. Using a
local wave front traversal, we discover the local topolo-
gies of the mesh and identify features such as small tun-
nels. We then identify non-separating cuts along which
we cut and seal the mesh, reducing the genus and thus
the topological complexity of the mesh.

Key words: Meshes, irregular connectivity, topology.

1 Introduction

Acquisition of computer models with highly detailed ge-
ometry is currently practical due to developments in laser
range finder technology. Huge volumes of geometric
data are routinely acquired and used in design, manufac-
turing, and entertainment. Raw irregular meshes com-
ing from model acquisition contain millions of triangles,
and require efficient processing tools. Such data is typ-
ically converted into a more efficient and “regular” rep-
resentation such as NURBS or other spline/subdivision-
based multiresolution surface representations. This pro-
cess is called remeshing in the graphics literature [22][18]
[21][25][24]. Several remeshing methods use simplifica-
tion hierarchies of the initial irregular mesh in order to
build efficient computational procedures. However, raw
irregular meshes extracted from noisy volumetric data of-
ten have small tunnels and handles: artifacts of the acqui-
sition process. We present an algorithm to eliminate such
topological “noise”, greatly improving the construction
of the simplification hierarchy and thus in turn, improv-
ing the final remeshed model.

Scanned geometry can easily contain millions of data
points, therefore the manual removal of artifacts is a te-
dious and time-consuming task; we would like to auto-
mate this process as much as possible. However, scanned
models, such as mechanical parts, potentially have impor-
tant non-trivial topology (holes, handles, tunnels, etc.).
One therefore needs a clear criteria to discern which tun-
nels can be safely removed algorithmically. The contri-
bution of this paper is to introduce a simple criteria for

identifying topological noise, and a fast algorithm that
finds small tunnels in the data, and removes them one by
one. The user can control criteria to help determine which
tunnels are noise and which are inherent to the model. In
addition, we show that the performance of the naive im-
plementation of our topology filtering algorithm can be
significantly improved by a preprocessing step.

Figure 1: Scanned meshes from Stanford 3D model repos-
itory [26]. All three meshes are valid 2-manifolds:
the Buddha has genus 104, the dragon has genus 46,
and David’s head has genus 340. Most of these tun-
nels/handles are noise and can be safely removed.

To demonstrate our approach we apply our technique
to a variety of the Stanford laser range finder datasets.
For example, we consider the dataset of the David’s head
from Stanford’s Michelangelo project [26]. The origi-
nal irregular mesh has genus 340. Obviously, none of
these 340 tiny tunnels are actually present in the original



sculpture, therefore all these tunnels (or handles) can be
removed to facilitate further processing tasks. An irreg-
ular mesh of David’s head containing more than a mil-
lion triangles is processed by our algorithm in one hour,
removing 313 (92%) of the tunnels automatically. The
algorithm can also be run in an interactive mode leaving
the decision to remove bigger handles to a user. Complete
filtering can also be made efficient using a combined fil-
tering and simplification approach (see section 3 for more
details).

1.1 Setting
The main application of our method is the processing of
meshes coming from 3D model acquisition such as laser
scanning. During acquisition, a complex model is often
built from several scans. Each scanning pass produces
a grid of points in space possibly with holes. A num-
ber of popular mesh reconstruction methods [9][31] [19]
combine several range maps using an auxiliary volumet-
ric representation: a signed distance volume constructed
from a collection of scans. An isosurface is then extracted
using the Marching Cubes algorithm [27]. The result is
an irregular mesh that is a proper manifold with bound-
ary. The data coming from the scanner can be noisy and
incomplete, hence the noise in the signed distance vol-
ume.

While the manifold property of the extracted surface
can be guaranteed with small modifications to the original
Marching Cubes algorithm[23], we observe that for noisy
data it still produces topological artifacts such as tiny han-
dles. It is often important to remove these handles so that
they do not encumber later processing, such as simplifi-
cation [20], smoothing, denoising [10], and remeshing.
Figure 8 shows the result of applying a smoothing proce-
dure to a mesh with handles. While most of the surface
gets smoother, the areas containing handles have visible
artifacts.

The effect of small handles on simplification algo-
rithms requires a more careful explanation. One can dis-
tinguish two classes of simplification procedures: the al-
gorithms of the first class assume that the original mesh is
a proper manifold with a boundary and preserve the genus
of the surface for each simplification step. Such simpli-
fication is often used as an integral part of some larger
multiresolution processing procedure that may rely on the
topological equivalence of meshes on different levels of
the hierarchy [25][8][17] [35][18]. This kind of simpli-
fication algorithm will clearly benefit from topological
noise removal – we show several examples of such im-
provements in Section 3. The simplification algorithms
of the second class (e.g. [15]) do not assume the mani-
fold property and will therefore simplify the given mesh
(or polygon/edge soup, or simplicial complex[30]) with-

out noticing small tunnels and handles. However, these
algorithms are useful only for simplification per se, and
despite starting with a proper manifold they cannot guar-
antee that the manifold property will be maintained for
coarser levels of the hierarchy.

1.2 Related work
A variety of researchers have relied on coding or match-
ing the topology of a given mesh to a new configura-
tion [29][3][4]. Most recently a lot of attention has been
directed towards general simplicial complexes. Specif-
ically, the problem of preserving the topology of sim-
plicial complexes while applying edge contractions was
considered by Dey et al [34]. The recent paper by Edels-
brunner et al.[11] considers topological simplification in
the context of alpha complexes. It is worth noting that
topological simplification of simplicial complexes in R3

is a much harder and less intuitive problem than the one
we consider.

El-Sana and Varshney [12][13] address a similar prob-
lem of controlled topology simplification for polygonal
models. Their approach identifies removable tunnels by
rolling a sphere of small radius over the object and fill-
ing the tunnels that are not accessible. The method per-
forms well for mechanical CAD models. The interaction
between mesh and topology simplification is also consid-
ered. Our approach is different in that it identifies tunnels
by working within the surface, and thus can be applied to
self-intersecting meshes as long as they are topologically
2-manifolds. Also, the focus of our work is to identify
very small tunnels in noisy meshes.

Work has been done by Stander et al [33] on using crit-
ical points from Morse theory to guarantee the topology
of the polygonization of an implicit surface. It is diffi-
cult to generalize this work to the irregular mesh setting
without becoming computational intensive (see [6] for
a potential solution). We focus on discrete methods that
can rapidly discover the topology.

Recent work by Wood et al [37] presented an algo-
rithm to quickly identify and reconstruct the topology
of a surface implicitly represented in a volume. This
work uses a wave front traversal in order to identify the
global topology of the surface. The algorithm presented
here has similarities but is generalized to the mesh setting
with optimizations to discover small local topology and
with optimizations to identify topological events. This
work is closely related to work done by Axen [7] which
relates a discrete wavefront traversal and critical points
from Morse theory.

It is worth noting that there is another way to poten-
tially “filter” or smooth the noisy topology of scanned
data by smoothing/down-sampling the initial volume
data. Although this approach may remove many of the



small tunnels present in the data, it will do so in an un-
controlled manner and will potentially wipe out other fea-
tures of the model (thin tubes and connected components
could be broken apart and the finer detailed geometry will
disappear). Recent work by Gerstner and Pajarola [16]
on topology preserving volume simplification is one po-
tential solution to try to control the effect of the down-
sampling, however, presently this work offers no method
to distinguish important topology inherent to the model
(such as a large handle) and small tunnels.

Finally, a great deal of work has been focused on sim-
plifying meshes in general. Work by both Popovic and
Hoppe [30] and Garland and Heckbert [15] could be ap-
plied to simplify “away” the small noisy tunnels present
in the scanned meshes. However, in our work we seek
more explicit topology changes that can be potentially
adapted in a multiresolution processing algorithms such
as MAPS [25].

1.3 Overview of the algorithm

(a)

(e)(d)

(c)(b)

(f)

Figure 2: (a-e) Overview of the algorithm: (a) a small
region is grown around a seed face; (b) the genus of the
grown region becomes non-zero; (c) a non-separating cut
is found; (d) the mesh is cut; (e) both new holes are
sealed. (f) The left handle is “fully inside” a ball of a
small radius; the right handle is not. Note that both han-
dles could be eliminated by short cuts. Our algorithm
will only remove the left handle. (Formally, the left high-
lighted region is of genus one, while the right highlighted
region is of genus zero.)

We follow an approach similar to the ones presented
in Wood et al. [37] and Axen et al.[7]. We grow an
open region by adding faces one by one, while explicitly
maintaining the active front edges. Every time a bound-
ary component of the growing region touches itself along
an edge, we split this boundary into two smaller bound-
ary fronts and continue propagation. This results in a
tree of active front components. Whenever boundaries of
two different components touch along an edge, we claim
to have found a handle. There are two stopping criteria
for our region growing procedure – we either exhaust all
the faces that are closer than some given radius from the
seed face, or we actually find a handle in which case the
growing stops and the mesh is cut along a non-separating
curve. This operation does not change the connectedness

of the surface but does reduce its genus introducing two
new holes (boundaries), which are later triangulated us-
ing methods described in [32][25], or commercial pack-
ages [1][2]. (Figure 2 illustrates this process.) In this
way, we remove the small handles one by one, filtering
the local topology of the mesh.

2 Algorithm

We consider a triangular mesh M = (K,x) where
K = V ∪ E ∪ F is an abstract simplicial complex rep-
resenting the connectivity of the mesh (V , E , and F are
sets of vertices, edges, and faces, correspondingly), and
x : V → R3 is the coordinate function that gives the
coordinates of every vertex of V . x can be extended to
the polytope |K| ofK using barycentric coordinates [28].
In this paper the focus is on meshes extracted as isosur-
faces of certain volumetric functions, and therefore, such
meshes are guaranteed to be oriented manifolds. Thus,
all meshes considered in this paper are presumed to be
oriented manifolds with boundary. Topology of such sur-
faces is easily characterized by their genus.

2.1 m-Closures

Our interest lies in finding “small” tunnels in the mesh,
where the “smallness” will be defined later. Thus, we
need to characterize topological properties of local re-
gions of the mesh. For example, given a collection of
faces T = {t1, t2, . . . , tk}we would like to explore topo-
logical properties of the surface region defined by this
set of faces. One way to approach this characterization
would be to find the closure T̄ inK, and look at its proper-
ties. Note that the closure T̄ for arbitrary T may not have
the manifold property anymore, see Figure 3 for example.
It is in fact a subcomplex ofK and can be characterized as
a general 2-complex, see [36]. However, that characteri-
zation is far too general for our purposes here. We there-
fore introduce a different “closure” operation that for a
mesh region builds a corresponding mesh that is a man-
ifold with boundary, and as such can be easily described
by its genus. We call this operation manifold closure or
simply m-closure, defined as follows.

First, note that Figure 3 represents the only way that T̄
can be non-manifold. Moreover, it can be fixed with the
following procedure (see Figure 3 for an illustration): for
every non-manifold vertex v ∈ T̄ its star neighborhood
in T̄ can be written as union of a number of semi-stars
H
(i)
v : StT̄ v =

⋃Nv
i=1H

(i)
v , where

⋂Nv
i=1H

(i)
v = {v},

and each semi-star is of the form: H
(i)
v =

{{v} , {v, u0} , {v, u0, u1} , . . . , {v, uk−1, uk} , {v, uk}}.
We define the m-closure of T inK as the mesh obtained

from T̄ by splitting every non-manifold vertex v withNv
adjacent semi-stars into Nv vertices v(1), . . . , v(Nv), and
replacing each occurrence of v in the simplices of StT̄ v



v
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Figure 3: Non-manifold closure (Nv = 3) is fixed by mak-
ing three copies of the vertex v.

by the appropriate new vertex depending on which semi-
star they belong to. We denote the resulting mesh as m̄T .
Note that the interiors of m-closure and usual closure co-
incide: int T̄ = int m̄T .

2.2 Small tunnels

It is now necessary to define which tunnels need to be
removed. For that purpose, we consider the dual graph
(F , E ′) of the mesh M where a dual edge (t1, t2) be-
tween two faces of the mesh is in E ′ if t1 and t2 share a
(primal) edge in the triangulation. If some non-negative
weight functionw is defined on E ′, we can now define the
distance d(s, t) between any two faces s and t as the min-
imal sum of weights over all the paths in the dual graph.
One easy example is given by settingw(e′) = 1 for every
e′ ∈ E ′. It is also possible to make weights that would ap-
proximate geodesic distances on a manifold. In this paper
we use w ≡ 1.

Now we can give the general principle that we use to
remove small tunnels:

ε-simple meshes
MeshM is ε-simple if for every face t ∈ F the m-closure
of dual ε-ball m̄ {s : d(s, t) < ε} is of genus zero.

Our goal therefore becomes to convert a given mesh
into an ε-simple mesh. This can be done by finding
closed cuts that leave the mesh connected. Each such cut
will reduce the genus of the surface by one. In the fol-
lowing sections, we introduce an algorithm to find such
non-separating closed cuts (a cut is non-separating if it
leaves the surface connected [5].) These cuts will be
found inside the corresponding ε-balls; note however that
such short non-separating cuts can exist in meshes that
are ε-simple for small ε, such as the ones containing long
narrow handles, see Figure 2(f). However, it is not clear
that such long handles should be automatically removed.
In our approach, we will only find cuts corresponding to
handles that are completely contained in small regions of
the mesh.

2.3 Region growing
In this section we describe an algorithm that looks for
tunnels in the neighborhood of a seed face. Later, in Sec-
tion 2.6 we explain a global search for tunnels that will
use this local procedure as an elementary operation.

The local procedure starts with a seed face tseed ∈ F .
The faces from the ε-ball around tseed are considered one
by one in the order produced by using Dijkstra’s algo-
rithm on the dual graph. Thus, a sequence t1, t2, . . . , tk
is constructed. We define the i-th active region as
Ai(tseed) := m̄ {tseed, t1, . . . , ti} for i = 1, . . . , k. Al-
gorithmically, the active region is grown one face at a
time, while the explicit representation of active bound-
aries is maintained. Every time a new face is added, we
check the genus of the resulting active region. The pro-
cess starts with one triangle which is obviously of genus
zero. We then proceed either until all the faces of the
ε-ball are exhausted, or until we find that after the cur-
rent triangle is added, the genus of the active region has
grown. If the latter happens, the region growing stops and
a non-separating closed cut is found inside the active re-
gion. We then cut the mesh (possibly locally subdividing
it), seal the two resulting holes, and start with the current
seed face again. Thus, the small tunnels in the mesh are
extinguished one by one.

We now describe the particulars of maintaining the ac-
tive region and tracking its genus.

2.4 Evolution of the active region
Suppose the active region A is given and another face t
needs to be added to it. By construction, A ∩ t contains
an edge. The change of active region is performed using
the following three operations: add-triangle, close-crack,
and merge-edge1 . We describe these operations below in
more detail.

(a) (b) (c)
Figure 4: (a) add-triangle operation; (b) close-crack op-
eration; (c) merge-edge operation. Current mesh region
shown in gray, with its boundary in blue.

Add-triangle
We assume that the active region and the new incoming
triangle share at least one common edge. Then the add-
triangle operation adds the triangle to the active region by
merging across a common edge. The resulting mesh has
one more face, two more edges, and one more vertex than

1Note that there is no need for a merge-vertex operation (when a
single vertex is adjacent to more than two boundary edges) due to m-
closure.



the original one (see Figure 4(a)). The number of bound-
ary components does not change. Thus, the genus of the
corresponding mesh region does not change. Indeed,

χnew = Vnew −Enew + Fnew +Hnew
= (Vold + 1)− (Eold + 2) + (Fold + 1) +Hold
= χold.

Since the genus of the region is g = 1 − χ/2, and
χ is unchanged, the genus of the current mesh region is
preserved during the add-triangle operation.

In order to find the non-intersecting cut later, each face
stores a pointer to the face to which it was added. To set
up the notation, let t be the new face and t′ ∈ A be a face
from the active region that shared a common edge with t.
We call t′ the parent of t, or t′ = parent(t).

Close-crack
Once the new triangle is added to the mesh we need to re-
solve possible self-adjacencies along the boundary. One
local inconsistency is depicted in Figure 4(b). We fix
the boundary locally by eliminating two boundary edges.
The resulting mesh has one less edge, and one less vertex
than the original one. The number of faces and bound-
ary components does not change. Thus, the genus of the
corresponding mesh does not change. Again,

χnew = (Vold − 1)− (Eold − 1) + Fold +Hold
= χold.

Merge-edge
The last operation required to maintain a consistent active
region is not local, in that it requires adjacency tests be-
tween different parts of the boundaries, or even between
different boundary components. Indeed, the close-crack
operation cannot resolve situations such as the one shown
in Figure 4(c). Here two edges lying on two separate
pieces of the boundary of the current region correspond
to the same edge of the original mesh. We fix this in-
consistency by merging the current region(s) across this
edge. As a result the number of boundary components
will either increase by one (when the merged edges be-
long to the same boundary component), or decrease by
one (when two different boundary components become
one). Note that these two cases closely correspond to the
topological events described in [37], when the active edge
front either splits into two when a handle in the surface
is encountered, or when it merges back into a single front
at the other side of the handle. The merge-edge opera-
tion results in one less edge and two less vertices for the
active region, and the number of faces does not change.
Depending on the value of the change in the number of
boundary components we will encounter two cases:

(a) (b)
Figure 5: Before and after merge-edge operation: (a)
A boundary component splits; (b) two boundary com-
ponents merge. Current mesh region shown in gray, its
boundary in blue, the unexplored region of the mesh is in
yellow.

A boundary splits. Figure 5(a).

χnew = (Vold − 2)− (Eold − 1) + Fold + (Hold + 1)
= χold.

Boundaries merge. Figure 5(b).

χnew = (Vold − 2)− (Eold − 1) + Fold + (Hold − 1)
= χold − 2.

In this last case the genus of the active region increases
by one. When this final case is detected, we proceed by
performing a non-separating cut, thus reducing the genus
by one.

2.5 Cutting the mesh
In this section, we describe how a non-separating cut is
found inside the active region after a merge-edge oper-
ation has merged two boundary components. Suppose
that the two boundaries merged along the edge eM =
{v(1), v(2)} = t(1) ∩ t(2). We build two sequences of
faces, p(1) and p(2), defined as p(j) = (t(j)1 , . . . , t

(j)
Kj
),

where t(j)k+1 = parent(t
(j)
k ), j = 1, 2. Note that both of

these face paths end at the original seed face which has no
parent. After excluding a common tail of these two paths
we have a closed path in the dual graph of the active re-
gion. It is then possible to subdivide the faces on this
closed path so that there is a closed cut along the edges of
this locally subdivided mesh which does not intersect it-
self, see Figure 6. Note that this path is completely inside
the interior of the current active mesh region.

We can also prove that this cut is non-separating, that
is, it leaves the active mesh region (and hence the mesh
itself) connected. In order to prove that we simply notice
that the two vertices v(1) and v(2) lie on the different sides
of the cut locally but we can reach v(2) from v(1) by fol-
lowing the boundary of the current active region (we can
do that because the cut is fully inside the active region
and thus does not touch the boundary). We also further
reduce the length of the cut, by using reductions similar
to the one shown in Figure 6. During these reductions we
do not allow faces t(1) and t(2) to disappear, therefore the



tseed

t(1)

t(2)
p(2)

p(1)

Figure 6: Cutting the mesh. Left: two paths in the dual
graph from the faces t(1) and t(2) to the seed face are
found by following the parent links. Note that the closed
face path in the dual graph can be reduced as shown by
the black dashed line (two adjacent faces allow a shorter
connection rather than taking the longer path through the
first common face of the paths p(1) and p(2)). Right: the
non-separating cut with the corresponding local mesh re-
finement.

argument above still holds. We then seal these two new
gaps in the mesh, and thus remove the handle.

The subdivision performed during the cut computation
changes distances in the dual graph. We fix this problem
by assigning zero weights to the new edges introduced
during subdivision (of course, the dual edges correspond-
ing to the edges in the cut itself simply disappear from the
dual graph of the modified mesh.)

2.6 Global procedure and preprocessing
In the previous section we described a procedure that
grows a mesh region of some radius ε > 0 centered at
a seed face and removes all the tunnels that are discov-
ered inside this mesh region one by one. We can run
this procedure starting from all the faces in the original
mesh. This will produce a mesh that is ε-simple. How-
ever, as ε grows the running times of this naive algorithm
become unacceptable. We propose a preprocessing step
that excludes large portions of seed faces from the con-
sideration. We rely on the following fact which is true in
a metric space. Let BR(t0) be the closed ball of radius R
centered at t0 (note that we measure the distances on the
surface, so in our case, a ball is a surface region.) Then
for any t′ ∈ BR−ε(t0) the ball centered at t′ of radius ε
is contained in BR(t0), in fact, Bε(t′) ⊂ BR(t0). There-
fore, in the preprocessing step we will be growing balls
until their genus changes, without any restriction on their
radius. Suppose that we have grown a mesh regionA that
includes the ball BR(t0) for some R > ε, and the genus
ofA is zero. Then we can be assured that any subset ofA
will also be of genus zero, and since the balls of radius ε
centered inside the smaller region BR−ε(t0) are subsets
of A, we can exclude them from the potential seed set.
These large regions are seeded in the preprocessing step

at randomly chosen faces of the original mesh (in prac-
tice, taking one percent of the original number of faces
produces good results). This procedure greatly reduces
the potential seed set for a given ε. For example, without
preprocessing, the algorithm takes 1147 seconds to per-
form filtering with radius 3 on the David’s head model;
while the improved procedure takes only 136 seconds.
More performance numbers can be found in Table 1.

3 Results

We have implemented the algorithm described in the pre-
ceding sections and performed various experiments re-
ducing the topological noise for a number of meshes from
the Stanford Archive [26]. We have found that most
of the models reconstructed using Curless and Levoy’s
VRIP method [9] have topological artifacts. We noticed
that meshes that were more convoluted in shape typically
have more tiny tunnels than the simple shaped models. In
addition, the presence of topological noise is more fre-
quent in the higher resolution models. We have run our
algorithm on models of different resolution with differ-
ent threshold radius settings and recorded the number of
tunnels removed and the algorithm’s running time. These
results are illustrated in Table 1.

(a) (b)
Figure 7: (a) The model of David’s head is remeshed
after topological noise has been removed. (b) The ear
region can be easily parameterized onto a square after
its topology has been filtered.

We have applied various mesh processing techniques
to meshes that have been topologically filtered using
our algorithm with encouraging results. In particular,
we were able to apply the multiresolution remesher of
Guskov et al. [18] to the simplified genus zero mesh of
David’s head. The resulting remesh is shown in Figure 7.
The base mesh for this remesh contains 262 triangles. It
would be impossible to achieve such a small number of
patches without first applying a topology filtering opera-
tion to the original data (remember that the original mesh
had 340 tunnels).



(a)

(b)

(c)

(d)
Figure 8: Smoothed version of David’s ear (a) and close
up view of the smoothed ear after topology filtering (b)
and a close up of the artifacts that occur without filtering
(flipped triangles) (c) and a detailed view of the tunnels
causing the artifacts (d).

Similarly, parameterization of mesh regions is a fun-
damental part of many remeshing, texturing, and other
mesh processing algorithms. The Figure 7 shows the
parameterized mesh region of the David’s ear. The tex-
ture coordinates are assigned with the (u, v)-coordinates
computed with the shape-preserving parameterization of
Floater [14]. The original unfiltered region of this mesh
contained twelve tunnels and could not be properly pa-
rameterized onto the unit square. Our algorithm removes
all of these tunnels in fifteen seconds, and produces a
mesh that is homeomorphic to a square, allowing it to
be parameterized.

Additionally, acquired meshes often contain geometric
noise, and have to be filtered with various mesh smooth-
ing/noise removal techniques. In particular, we used the
method described in Desbrun et al. [10]. If the origi-
nal mesh contains unnecessary non-trivial topological ar-
tifact, the smoothing procedure typically results in a mesh
with artifacts that foil its appearance (such as flipped tri-
angles), as shown in Figure 8. This is due to the fact that
smoothing operators cannot modify the topology of the
mesh, and the presence of these small handles impairs
the smoothing process by limiting its effects. Attempts
to smooth the region around small tunnels can poten-
tially result in collapsing the tunnel, creating undesirable
degeneracies. Thus first removing the topological noise
greatly improves the performance of geometric noise re-
moval procedures, as illustrated by Figure 8.

Finally, we have explored iterating between removing
topological noise and applying topology preserving mesh

1,088K faces
genus 104

1,088K faces
genus 33

178K faces
genus 33

178K faces
genus 15

54K faces
genus 15

54K faces
genus 11

16K faces
genus 11

16K faces
genus 7

4K faces
genus 7

Figure 9: Using both topology and geometry simplifica-
tion on the Buddha mesh (see Table 9.) Note that all the
meshes shown here are valid manifolds. The geometry
simplification was performed with Raindrop Geomagic
Studio [1]

.



Dataset Radius Removed Time
handles

David’s 4 55 10m 18s
head I 6 191 17m 22s

4000K faces 8 241 35m 34s
genus 340 10 264 1h 24m 43s

12 283 3h 13m 30s

David’s 4 193 3m 1s
head II 6 259 6m 1s

1173K faces 8 291 12m 53s
genus 340 10 301 27m 37s

12 313 56m 52s

David’s 4 286 1m 2s
head III 6 317 1m 58s

184K faces 8 323 4m 27s
genus 340 10 326 9m 36s

12 330 19m 6s

David (complete 6 7 27m 3s
statue) 8 12 34m 4s

8254K faces 10 13 45m 11s
genus 20 12 14 57m 43s

Buddha 6 60 4m 16s
1087K faces 8 71 10m 23s
genus 104 10 82 34m 24s

12 85 2h 43m 9s

Dragon 8 21 6m 4s
870K faces 10 32 16m 59s
genus 46 12 35 53m 3s

St.Matthew 6 3 21m 19s
3382K faces 12 4 29m 37s

genus 5

Table 1: Timings for topological noise removal are given
for Pentium III Xeon 550 MHz.

Size(faces) Genus before Genus after Time

1087K 104 33 623s
178K 33 15 94s
54K 15 11 64s
8K 11 7 32s

Table 2: Multiple resolutions processing of the Buddha
mesh. Mesh simplification was used to reduce the face
count of the models between the topology filtering steps
(see Figure 9.) Threshold radius was set to 8 for all runs.

simplification. Running these two processes alternatively
decreases the amount of time to discover all the small
tunnels on a given mesh. The results of such an itera-
tion sequence are presented in Table 2 (the correspond-
ing sequence of meshes is shown in Figure 9). It is clear
that if the topology simplification is used as a part of a
multiresolution technique such as remeshing, this grad-
ual approach would be preferable for efficiency reasons.
We leave the complete exploration of these ideas as future
work.

4 Conclusions and future work

Topological noise is a serious problem for many scanned
models. This noise results in visible artifacts when these
meshes are smoothed, encumbers parameterization and
hinders the performance of many multiresolution tech-
niques. We have presented a simple criteria for identify-
ing such topological noise and a computational procedure
that removes these topological artifacts. The algorithm is
very robust and is able to process extremely large meshes.

In this paper we have focused on removing the topo-
logical noise from the original resolution of the model
and did not concern ourselves with larger scale genus
changing operations. In fact most of the tunnels removed
with our algorithm are in the very crooked parts of small
regions of the mesh, and their removal does not affect the
visual appearance of the model. It would be very interest-
ing to explore genus changing operations in the multires-
olution setting, perhaps directly within a mesh simplifica-
tion or remeshing framework. Another exciting prospect
for future work is the direct removal of topological noise
from the original volume data.
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Surface representations
� large class
� interactive
� quality

Modeling Geometry
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Geometric Modeling
Common approaches

� polyhedral meshes
� spline (NURBS) patches
� solid modeling
� implicit surfaces
� generative (functional composition)
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Geometry Processing
Signal processing tool box

� denoising,…
� enhancement,…
� editing,…

original single resolution
low pass

multiresolution
low pass

mid stop band
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Geometry Processing
Stages

� creation, acquisition
� storage, transmission
� authentication
� editing, animation
� simulation
� manufacture

progressive transmission
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Parameterized Surfaces
What about NURBS?

� spline patches are great, but…
� difficult to stitch them together

� trimming… (what a nightmare)
� can be slow and cumbersome
� we need scalable algorithms for the 

whole range from patches to fine 
meshes
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Complex Shapes
Example: Building a hand

� Woody’s hand from Pixar’s Toy 
Story

� very, very difficult to avoid seams
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No More Seams
Subdivision solves the “stitching” 
problem
� a single smooth surface is defined
� example:

� Geri’s hand                                                
(Geri’s Game;                                            
Pixar)
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Patches
Advantages

� high level control (control points)
� compact representation
� multiresolution structure

Disadvantages
� difficult to maintain and manage
� naïve rendering of large models slow
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Polygonal Meshes
Advantages

� very general
� direct hardware implementation

Disadvantages
� heavy weight representation
� good editing semantics difficult
� limited multiresolution structure
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What is Subdivision?
Define a smooth surface as the 
limit of a sequence of successive 
refinements
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Interpolating
Keep old points, insert new ones

� affine combination of nearby 
points
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Approximating
Insert new, smooth new and old

� generalizes spline patches
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Lots of Flavors
Quadrilateral

� interpolating: Kobbelt scheme
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Subdivision Surfaces
Important modeling primitive

� smooth, arbitrary topology surface 
modeling

� generalizes spline patches
� covers range of representations from 

“pure” patches to “pure” meshes
� BUT: special connectivity (more on 

that later)
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The Basic Setup (2D)
Topological rule

� modify connectivity
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The Basic Setup (2D)
Geometric rule

� compute geometric positions
� local linear combination of points

even at level i odd at level i
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Generalizes quartic box splines
� very simple rules

Loop Scheme

smooth boundary convex
corner

concave
corner

crease

11
6

1 1

boundary

3

1

1

3 β

β

β

β β

β

1-kβ

β=3/8k



19

SIGGRAPH 2001 Course on Digital Geometry Processing

Subdivision
Established schemes

� Catmull-Clark
� generalizes bi-cubic patches

� Loop
� generalizes quartic box splines

� many others:
� Doo-Sabin, Butterfly, Kobbelt, 

Peters/Reif
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Comparison

Loop
Catmull-

Clark

Butterfly
Doo-
Sabin

Cube
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Comparison
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Comparison

initial mesh Loop
Catmull-

Clark
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Comparison
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Why Subdivision
Many advantages

� arbitrary topology
� scalable
� wavelet connection
� easy to implement
� efficient

From meshes to surfaces!
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Multiresolution
What does it offer?

� good editing semantics
� deep connection with wavelets

� compression, solvers, 
speed/accuracy tradeoff, 
approximation properties

� builtin support for LOD display
� very efficient
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Application Example
Interactive multiresolution mesh 
editing
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Multiresolution
Subdivision alone not enough

� where are the details?
� just add!

� parameterization of details 
important for editing

� may be different for transmission
� pure wavelet setting not good 

enough
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Multiresolution
Extension of  subdivision

� details at different scales

SubdivisionInitial mesh Multiresolution
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Successive Scales
Add details in every subdivision step

� subdivide then displace

0th level 1st level 2nd level
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Algorithms
Two main components

� Synthesis: coarse to fine
� subdivision
� adding details (displacements)

� Analysis: fine to coarse
� smoothing (Taubin)
� computing details
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Defining Details

Local 
frameLevel  i

Level  i-1

details

Smoothing Subdivision

Analysis

Synthesis
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Levels of Detail

Analysis

Synthesis
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From Fine to Coarse
Defining details

� apply Taubin smoother to fine level

� subdivide and take difference

� express in local coordinate frame 
induced by coarser level
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Details
Correct editing behavior

� requires local frames
� transform becomes non-linear

� no subsampling performed
� Laplacian pyramid type construction
� otherwise massive aliasing
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Global Local

edit edit

Local vs Global Frame
Editing behavior

� global frame: simpler
� local frame: typically better
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Representing Details
Details represented in local frame
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Adaptive Control
Thresholds

� adaptive analysis
� ignore details which are too small

� adaptive synthesis
� approximate given geometry 

sufficiently
� adaptive rendering

� stay within hardware triangle budget
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Example
Armadillo man

� 220k triangles of scanned geometry
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Coarse Level Edit
Control vertices

� pull group at coarsest level
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Fine Level Edit
Control vertices

� descend several levels
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Summary
Subdivision

� fundamental modeling paradigm
� spans patches to meshes continuum

� simple algorithms
� attractive properties
� close connection with wavelets
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Summary
Multiresolution

� extend subdivision through 
addition of details
� local coordinate frames important

� rendering bound application 
greatly accelerated

� details much better to code
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Caltech
Wim Sweldens‡

Bell Laboratories

Abstract
We describe a multiresolution representation for meshes based on
subdivision, which is a natural extension of the existing patch-based
surface representations. Combining subdivision and the smooth-
ing algorithms of Taubin [26] allows us to construct a set of algo-
rithms for interactive multiresolution editing of complex hierarchi-
cal meshes of arbitrary topology. The simplicity of the underly-
ing algorithms for refinement and coarsification enables us to make
them local and adaptive, thereby considerably improving their effi-
ciency. We have built a scalable interactive multiresolution editing
system based on such algorithms.

1 Introduction
Applications such as special effects and animation require creation
and manipulation of complex geometric models of arbitrary topol-
ogy. Like real world geometry, these models often carry detail at
many scales (cf. Fig. 1). The model might be constructed from
scratch (ab initio design) in an interactive modeling environment or
be scanned-in either by hand or with automatic digitizing methods.
The latter is a common source of data particularly in the entertain-
ment industry. When using laser range scanners, for example, indi-
vidual models are often composed of high resolution meshes with
hundreds of thousands to millions of triangles.

Manipulating such fine meshes can be difficult, especially when
they are to be edited or animated. Interactivity, which is crucial in
these cases, is challenging to achieve. Even without accounting for
any computation on the mesh itself, available rendering resources
alone, may not be able to cope with the sheer size of the data. Pos-
sible approaches include mesh optimization [15, 13] to reduce the
size of the meshes.

Aside from considerations of economy, the choice of represen-
tation is also guided by the need for multiresolution editing se-
mantics. The representation of the mesh needs to provide con-
trol at a large scale, so that one can change the mesh in a broad,
smooth manner, for example. Additionally designers will typi-
cally also want control over the minute features of the model (cf.
Fig. 1). Smoother approximations can be built through the use of
patches [14], though at the cost of loosing the high frequency de-
tails. Such detail can be reintroduced by combining patches with
displacement maps [17]. However, this is difficult to manage in the

∗dzorin@gg.caltech.edu
†ps@cs.caltech.edu
‡wim@bell-labs.com

arbitrary topology setting and across a continuous range of scales
and hardware resources.

Figure 1: Before the Armadillo started working out he was flabby,
complete with a double chin. Now he exercises regularly. The orig-
inal is on the right (courtesy Venkat Krischnamurthy). The edited
version on the left illustrates large scale edits, such as his belly, and
smaller scale edits such as his double chin; all edits were performed
at about 5 frames per second on an Indigo R10000 Solid Impact.

For reasons of efficiency the algorithms should be highly adap-
tive and dynamically adjust to available resources. Our goal is to
have a single, simple, uniform representation with scalable algo-
rithms. The system should be capable of delivering multiple frames
per second update rates even on small workstations taking advan-
tage of lower resolution representations.

In this paper we present a system which possesses these proper-
ties

• Multiresolution control: Both broad and general handles, as
well as small knobs to tweak minute detail are available.

• Speed/fidelity tradeoff: All algorithms dynamically adapt to
available resources to maintain interactivity.

• Simplicity/uniformity: A single primitive, triangular mesh, is
used to represent the surface across all levels of resolution.

Our system is inspired by a number of earlier approaches. We
mention multiresolution editing [11, 9, 12], arbitrary topology sub-
division [6, 2, 19, 7, 28, 16], wavelet representations [21, 24, 8, 3],
and mesh simplification [13, 17]. Independently an approach simi-
lar to ours was developed by Pulli and Lounsbery [23].

It should be noted that our methods rely on the finest level mesh
having subdivision connectivity. This requires a remeshing step be-
fore external high resolution geometry can be imported into the ed-
itor. Eck et al. [8] have described a possible approach to remeshing
arbitrary finest level input meshes fully automatically. A method
that relies on a user’s expertise was developed by Krishnamurthy
and Levoy [17].

1.1 Earlier Editing Approaches
H-splines were presented in pioneering work on hierarchical
editing by Forsey and Bartels [11]. Briefly, H-splines are obtained
by adding finer resolution B-splines onto an existing coarser resolu-
tion B-spline patch relative to the coordinate frame induced by the



coarser patch. Repeating this process, one can build very compli-
cated shapes which are entirely parameterized over the unit square.
Forsey and Bartels observed that the hierarchy induced coordinate
frame for the offsets is essential to achieve correct editing seman-
tics.

H-splines provide a uniform framework for representing both the
coarse and fine level details. Note however, that as more detail
is added to such a model the internal control mesh data structures
more and more resemble a fine polyhedral mesh.

While their original implementation allowed only for regular
topologies their approach could be extended to the general setting
by using surface splines or one of the spline derived general topol-
ogy subdivision schemes [18]. However, these schemes have not
yet been made to work adaptively.

Forsey and Bartels’ original work focused on the ab initio de-
sign setting. There the user’s help is enlisted in defining what is
meant by different levels of resolution. The user decides where to
add detail and manipulates the corresponding controls. This way
the levels of the hierarchy are hand built by a human user and the
representation of the final object is a function of its editing history.

To edit an a priori given model it is crucial to have a general pro-
cedure to define coarser levels and compute details between levels.
We refer to this as the analysis algorithm. An H-spline analysis al-
gorithm based on weighted least squares was introduced [10], but
is too expensive to run interactively. Note that even in an ab initio
design setting online analysis is needed, since after a long sequence
of editing steps the H-spline is likely to be overly refined and needs
to be consolidated.

Wavelets provide a framework in which to rigorously de-
fine multiresolution approximations and fast analysis algorithms.
Finkelstein and Salesin [9], for example, used B-spline wavelets
to describe multiresolution editing of curves. As in H-splines, pa-
rameterization of details with respect to a coordinate frame induced
by the coarser level approximation is required to get correct edit-
ing semantics. Gortler and Cohen [12], pointed out that wavelet
representations of detail tend to behave in undesirable ways during
editing and returned to a pure B-spline representation as used in
H-splines.

Carrying these constructions over into the arbitrary topology sur-
face framework is not straightforward. In the work by Lounsbery et
al. [21] the connection between wavelets and subdivision was used
to define the different levels of resolution. The original construc-
tions were limited to piecewise linear subdivision, but smoother
constructions are possible [24, 28].

An approach to surface modeling based on variational methods
was proposed by Welch and Witkin [27]. An attractive character-
istic of their method is flexibility in the choice of control points.
However, they use a global optimization procedure to compute the
surface which is not suitable for interactive manipulation of com-
plex surfaces.

Before we proceed to a more detailed discussion of editing we
first discuss different surface representations to motivate our choice
of synthesis (refinement) algorithm.

1.2 Surface Representations
There are many possible choices for surface representations.
Among the most popular are polynomial patches and polygons.

Patches are a powerful primitive for the construction of coarse
grain, smooth models using a small number of control parameters.
Combined with hardware support relatively fast implementations
are possible. However, when building complex models with many
patches the preservation of smoothness across patch boundaries can
be quite cumbersome and expensive. These difficulties are com-
pounded in the arbitrary topology setting when polynomial param-
eterizations cease to exist everywhere. Surface splines [4, 20, 22]
provide one way to address the arbitrary topology challenge.

As more fine level detail is needed the proliferation of control
points and patches can quickly overwhelm both the user and the
most powerful hardware. With detail at finer levels, patches become
less suited and polygonal meshes are more appropriate.

Polygonal Meshes can represent arbitrary topology and re-
solve fine detail as found in laser scanned models, for example.
Given that most hardware rendering ultimately resolves to triangle
scan-conversion even for patches, polygonal meshes are a very ba-
sic primitive. Because of sheer size, polygonal meshes are difficult
to manipulate interactively. Mesh simplification algorithms [13]
provide one possible answer. However, we need a mesh simpli-
fication approach, that is hierarchical and gives us shape handles
for smooth changes over larger regions while maintaining high fre-
quency details.

Patches and fine polygonal meshes represent two ends of a spec-
trum. Patches efficiently describe large smooth sections of a surface
but cannot model fine detail very well. Polygonal meshes are good
at describing very fine detail accurately using dense meshes, but do
not provide coarser manipulation semantics.

Subdivision connects and unifies these two extremes.

Figure 2: Subdivision describes a smooth surface as the limit of a
sequence of refined polyhedra. The meshes show several levels of
an adaptive Loop surface generated by our system (dataset courtesy
Hugues Hoppe, University of Washington).

Subdivision defines a smooth surface as the limit of a sequence
of successively refined polyhedral meshes (cf. Fig. 2). In the reg-
ular patch based setting, for example, this sequence can be defined
through well known knot insertion algorithms [5]. Some subdi-
vision methods generalize spline based knot insertion to irregular
topology control meshes [2, 6, 19] while other subdivision schemes
are independent of splines and include a number of interpolating
schemes [7, 28, 16].

Since subdivision provides a path from patches to meshes, it can
serve as a good foundation for the unified infrastructure that we
seek. A single representation (hierarchical polyhedral meshes) sup-
ports the patch-type semantics of manipulation and finest level de-
tail polyhedral edits equally well. The main challenge is to make
the basic algorithms fast enough to escape the exponential time and
space growth of naive subdivision. This is the core of our contribu-
tion.

We summarize the main features of subdivision important in our
context
• Topological Generality: Vertices in a triangular (resp. quadri-

lateral) mesh need not have valence 6 (resp. 4). Generated sur-
faces are smooth everywhere, and efficient algorithms exist for
computing normals and limit positions of points on the surface.

• Multiresolution: because they are the limit of successive refine-
ment, subdivision surfaces support multiresolution algorithms,
such as level-of-detail rendering, multiresolution editing, com-
pression, wavelets, and numerical multigrid.



• Simplicity: subdivision algorithms are simple: the finer mesh
is built through insertion of new vertices followed by local
smoothing.

• Uniformity of Representation: subdivision provides a single
representation of a surface at all resolution levels. Boundaries
and features such as creases can be resolved through modified
rules [14, 25], reducing the need for trim curves, for example.

1.3 Our Contribution
Aside from our perspective, which unifies the earlier approaches,
our major contribution—and the main challenge in this program—
is the design of highly adaptive and dynamic data structures and
algorithms, which allow the system to function across a range of
computational resources from PCs to workstations, delivering as
much interactive fidelity as possible with a given polygon render-
ing performance. Our algorithms work for the class of 1-ring sub-
division schemes (definition see below) and we demonstrate their
performance for the concrete case of Loop’s subdivision scheme.

The particulars of those algorithms will be given later, but Fig. 3
already gives a preview of how the different algorithms make up
the editing system. In the next sections we first talk in more detail
about subdivision, smoothing, and multiresolution transforms.

Adaptive render

Initial mesh

Render

Select group of vertices
at level i

Adaptive analysis

Begin dragging

Create dependent
submesh

DragRelease selection

Local analysis Local synthesis

Render

Adaptive synthesis

Figure 3: The relationship between various procedures as the user
moves a set of vertices.

2 Subdivision
We begin by defining subdivision and fixing our notation. There are
2 points of view that we must distinguish. On the one hand we are
dealing with an abstract graph and perform topological operations
on it. On the other hand we have a mesh which is the geometric
object in 3-space. The mesh is the image of a map defined on the
graph: it associates a point in 3D with every vertex in the graph
(cf. Fig. 4). A triangle denotes a face in the graph or the associated
polygon in 3-space.

Initially we have a triangular graph T0 with vertices V 0. By
recursively refining each triangle into 4 subtriangles we can build
a sequence of finer triangulations Ti with vertices V i, i > 0
(cf. Fig. 4). The superscript i indicates the level of triangles and
vertices respectively. A triangle t ∈ Ti is a triple of indices
t = {va, vb, vc} ⊂ V i.

The vertex sets are nested as V j ⊂ V i if j < i. We define
odd vertices on level i as Mi = V i+1 \ V i. V i+1 consists of two
disjoint sets: even vertices (V i) and odd vertices (Mi). We define
the level of a vertex v as the smallest i for which v ∈ V i. The level
of v is i+ 1 if and only if v ∈Mi.
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Figure 4: Left: the abstract graph. Vertices and triangles are mem-
bers of sets V i and T i respectively. Their index indicates the level
of refinement when they first appeared. Right: the mapping to the
mesh and its subdivision in 3-space.

With each set V i we associate a map, i.e., for each vertex v and
each level i we have a 3D point si(v) ∈ R3. The set si contains
all points on level i, si = {si(v) | v ∈ V i}. Finally, a subdivision
scheme is a linear operator S which takes the points from level i to
points on the finer level i+ 1: si+1 = S si

Assuming that the subdivision converges, we can define a limit
surface σ as

σ = lim
k→∞

Sk s0.

σ(v) ∈ R3 denotes the point on the limit surface associated with
vertex v.

In order to define our offsets with respect to a local frame we also
need tangent vectors and a normal. For the subdivision schemes
that we use, such vectors can be defined through the application of
linear operators Q and R acting on si so that qi(v) = (Qsi)(v)
and ri(v) = (Rsi)(v) are linearly independent tangent vectors at
σ(v). Together with an orientation they define a local orthonormal
frame F i(v) = (ni(v), qi(v), ri(v)). It is important to note that
in general it is not necessary to use precise normals and tangents
during editing; as long as the frame vectors are affinely related to
the positions of vertices of the mesh, we can expect intuitive editing
behavior.

1-ring at level i 1-ring at level i+1

Figure 5: An even vertex has a 1-ring of neighbors at each level of
refinement (left/middle). Odd vertices—in the middle of edges—
have 1-rings around each of the vertices at either end of their edge
(right).

Next we discuss two common subdivision schemes, both of
which belong to the class of 1-ring schemes. In these schemes
points at level i+1 depend only on 1-ring neighborhoods of points



at level i. Let v ∈ V i (v even) then the point si+1(v) is a function
of only those si(vn), vn ∈ V i, which are immediate neighbors
of v (cf. Fig. 5 left/middle). If m ∈ Mi (m odd), it is the vertex
inserted when splitting an edge of the graph; we call such vertices
middle vertices of edges. In this case the point si+1(m) is a func-
tion of the 1-rings around the vertices at the ends of the edge (cf.
Fig. 5 right).
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Figure 6: Stencils for Loop subdivision with unnormalized weights
for even and odd vertices.

Loop is a non-interpolating subdivision scheme based on a gen-
eralization of quartic triangular box splines [19]. For a given even
vertex v ∈ V i, let vk ∈ V i with 1 ≤ k ≤ K be its K 1-
ring neighbors. The new point si+1(v) is defined as si+1(v) =
(a(K)+K)−1(a(K) si(v) +

∑K

k=1
si(vk)) (cf. Fig. 6), a(K) =

K(1−α(K))/α(K), and α(K) = 5/8−(3+2 cos(2π/K))2/64.
For odd v the weights shown in Fig. 6 are used. Two inde-
pendent tangent vectors t1(v) and t2(v) are given by tp(v) =∑K

k=1
cos(2π(k + p)/K) si(vk).

Features such as boundaries and cusps can be accommodated
through simple modifications of the stencil weights [14, 25, 29].

Butterfly is an interpolating scheme, first proposed by Dyn et
al. [7] in the topologically regular setting and recently general-
ized to arbitrary topologies [28]. Since it is interpolating we have
si(v) = σ(v) for v ∈ V i even. The exact expressions for odd
vertices depend on the valence K and the reader is referred to the
original paper for the exact values [28].

For our implementation we have chosen the Loop scheme, since
more performance optimizations are possible in it. However, the
algorithms we discuss later work for any 1-ring scheme.

3 Multiresolution Transforms
So far we only discussed subdivision, i.e., how to go from coarse to
fine meshes. In this section we describe analysis which goes from
fine to coarse.

We first need smoothing, i.e., a linear operation H to build a
smooth coarse mesh at level i− 1 from a fine mesh at level i:

si−1 = H si.

Several options are available here:
• Least squares: One could define analysis to be optimal in the

least squares sense,

min
si−1
‖si − S si−1‖2.

The solution may have unwanted undulations and is too expen-
sive to compute interactively [10].

• Fairing: A coarse surface could be obtained as the solution to
a global variational problem. This is too expensive as well. An
alternative is presented by Taubin [26], who uses a local non-
shrinking smoothing approach.

Because of its computational simplicity we decided to use a version
of Taubin smoothing. As before let v ∈ V i have K neighbors
vk ∈ V i. Use the average, si(v) = K−1

∑K

k=1
si(vk), to define

the discrete Laplacian L(v) = si(v)− si(v). On this basis Taubin
gives a Gaussian-like smoother which does not exhibit shrinkage

H := (I + µL) (I + λL).

With subdivision and smoothing in place, we can describe the
transform needed to support multiresolution editing. Recall that
for multiresolution editing we want the difference between succes-
sive levels expressed with respect to a frame induced by the coarser
level, i.e., the offsets are relative to the smoother level.

With each vertex v and each level i > 0 we associate a detail
vector, di(v) ∈ R3. The set di contains all detail vectors on level i,
di = {di(v) | v ∈ V i}. As indicated in Fig. 7 the detail vectors
are defined as

di = (F i)t (si − S si−1) = (F i)t (I − S H) si,

i.e., the detail vectors at level i record how much the points at level
i differ from the result of subdividing the points at level i− 1. This
difference is then represented with respect to the local frame Fi to
obtain coordinate independence.

Since detail vectors are sampled on the fine level mesh V i, this
transformation yields an overrepresentation in the spirit of the Burt-
Adelson Laplacian pyramid [1]. The only difference is that the
smoothing filters (Taubin) are not the dual of the subdivision filter
(Loop). Theoretically it would be possible to subsample the detail
vectors and only record a detail per odd vertex of Mi−1. This is
what happens in the wavelet transform. However, subsampling the
details severely restricts the family of smoothing operators that can
be used.

t
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Figure 7: Wiring diagram of the multiresolution transform.

4 Algorithms and Implementation
Before we describe the algorithms in detail let us recall the overall
structure of the mesh editor (cf. Fig 3). The analysis stage builds
a succession of coarser approximations to the surface, each with
fewer control parameters. Details or offsets between successive
levels are also computed. In general, the coarser approximations
are not visible; only their control points are rendered. These con-
trol points give rise to a virtual surface with respect to which the
remaining details are given. Figure 8 shows wireframe representa-
tions of virtual surfaces corresponding to control points on levels 0,
1, and 2.

When an edit level is selected, the surface is represented inter-
nally as an approximation at this level, plus the set of all finer level
details. The user can freely manipulate degrees of freedom at the
edit level, while the finer level details remain unchanged relative
to the coarser level. Meanwhile, the system will use the synthesis
algorithm to render the modified edit level with all the finer details
added in. In between edits, analysis enforces consistency on the
internal representation of coarser levels and details (cf. Fig. 9).

The basic algorithms Analysis and Synthesis are very
simple and we begin with their description.

Let i = 0 be the coarsest and i = n the finest level with N
vertices. For each vertex v and all levels i finer than the first level



Figure 8: Wireframe renderings of virtual surfaces representing the
first three levels of control points.

Figure 9: Analysis propagates the changes on finer levels to coarser
levels, keeping the magnitude of details under control. Left: The
initial mesh. Center: A simple edit on level 3. Right: The effect of
the edit on level 2. A significant part of the change was absorbed
by higher level details.

where the vertex v appears, there are storage locations v.s[i] and
v.d[i], each with 3 floats. With this the total storage adds to 2 ∗ 3 ∗
(4N/3) floats. In general, v.s[i] holds si(v) and v.d[i] holds di(v);
temporarily, these locations can be used to store other quantities.
The local frame is computed by calling v.F (i).

Global analysis and synthesis are performed level wise:

Analysis

for i = n downto 1
Analysis(i)

Synthesis

for i = 1 to n
Synthesis(i)

With the action at each level described by

Analysis(i)

∀v ∈ V i−1 : v.s[i− 1] := smooth(v, i)
∀v ∈ V i : v.d[i] := v.F (i)t ∗ (v.s[i]− subd(v, i− 1))

and

Synthesis(i)

∀v ∈ V i : s.v[i] := v.F (i) ∗ v.d[i] + subd(v, i− 1)

Analysis computes points on the coarser level i− 1 using smooth-
ing (smooth), subdivides si−1 (subd), and computes the detail
vectors di (cf. Fig. 7). Synthesis reconstructs level i by subdividing
level i− 1 and adding the details.

So far we have assumed that all levels are uniformly refined, i.e.,
all neighbors at all levels exist. Since time and storage costs grow
exponentially with the number of levels, this approach is unsuitable
for an interactive implementation. In the next sections we explain
how these basic algorithms can be made memory and time efficient.

Adaptive and local versions of these generic algorithms (cf.
Fig. 3 for an overview of their use) are the key to these savings.
The underlying idea is to use lazy evaluation and pruning based on

thresholds. Three thresholds control this pruning: εA for adaptive
analysis, εS for adaptive synthesis, and εR for adaptive rendering.
To make lazy evaluation fast enough several caches are maintained
explicitly and the order of computations is carefully staged to avoid
recomputation.

4.1 Adaptive Analysis
The generic version of analysis traverses entire levels of the hierar-
chy starting at some finest level. Recall that the purpose of analysis
is to compute coarser approximations and detail offsets. In many
regions of a mesh, for example, if it is flat, no significant details
will be found. Adaptive analysis avoids the storage cost associated
with detail vectors below some threshold εA by observing that small
detail vectors imply that the finer level almost coincides with the
subdivided coarser level. The storage savings are realized through
tree pruning.

For this purpose we need an integer v.finest :=
maxi{‖v.d[i]‖ ≥ εA}. Initially v.finest = n and the fol-
lowing precondition holds before calling Analysis(i):
• The surface is uniformly subdivided to level i,
• ∀v ∈ V i : v.s[i] = si(v),

• ∀v ∈ V i | i < j ≤ v.finest : v.d[j] = dj(v).
Now Analysis(i) becomes:

Analysis(i)

∀v ∈ V i−1 : v.s[i− 1] := smooth(v, i)
∀v ∈ V i :
v.d[i] := v.s[i]− subd(v, i− 1)
if v.finest > i or ‖v.d[i]‖ ≥ εA then
v.d[i] := v.F (i)t ∗ v.d[i]

else
v.finest := i− 1

Prune(i− 1)

Triangles that do not contain details above the threshold are unre-
fined:

Prune(i)

∀t ∈ T i : If all middle vertices m have m.finest = i− 1
and all children are leaves, delete children.

This results in an adaptive mesh structure for the surface with
v.d[i] = di(v) for all v ∈ V i, i ≤ v.finest . Note that the re-
sulting mesh is not restricted, i.e., two triangles that share a vertex
can differ in more than one level. Initial analysis has to be followed
by a synthesis pass which enforces restriction.

4.2 Adaptive Synthesis
The main purpose of the general synthesis algorithm is to rebuild
the finest level of a mesh from its hierarchical representation. Just
as in the case of analysis we can get savings from noticing that in
flat regions, for example, little is gained from synthesis and one
might as well save the time and storage associated with synthe-
sis. This is the basic idea behind adaptive synthesis, which has two
main purposes. First, ensure the mesh is restricted on each level,
(cf. Fig. 10). Second, refine triangles and recompute points until
the mesh has reached a certain measure of local flatness compared
against the threshold εS .

The algorithm recomputes the points si(v) starting from the
coarsest level. Not all neighbors needed in the subdivision stencil
of a given point necessarily exist. Consequently adaptive synthesis
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Figure 10: A restricted mesh: the center triangle is in Ti and its
vertices in V i. To subdivide it we need the 1-rings indicated by the
circular arrows. If these are present the graph is restricted and we
can compute si+1 for all vertices and middle vertices of the center
triangle.

lazily creates all triangles needed for subdivision by temporarily re-
fining their parents, then computes subdivision, and finally deletes
the newly created triangles unless they are needed to satisfy the
restriction criterion. The following precondition holds before en-
tering AdaptiveSynthesis:

• ∀t ∈ T j | 0 ≤ j ≤ i : t is restricted

• ∀v ∈ V j | 0 ≤ j ≤ v.depth : v.s[j] = sj(v)

where v.depth := maxi{si(v)has been recomputed}.

AdaptiveSynthesis

∀v ∈ V 0 : v.depth := 0
for i = 0 to n− 1
temptri := {}
∀t ∈ T i :
current := {}
Refine(t, i,true)
∀t ∈ temptri : if not t.restrict then

Delete children of t

The list temptri serves as a cache holding triangles from levels
j < i which are temporarily refined. A triangle is appended to the
list if it was refined to compute a value at a vertex. After processing
level i these triangles are unrefined unless their t.restrict flag is
set, indicating that a temporarily created triangle was later found
to be needed permanently to ensure restriction. Since triangles are
appended to temptri , parents precede children. Deallocating the
list tail first guarantees that all unnecessary triangles are erased.

The function Refine(t, i, dir) (see below) creates children of
t ∈ T i and computes the values Ssi(v) for the vertices and mid-
dle vertices of t. The results are stored in v.s[i + 1]. The boolean
argument dir indicates whether the call was made directly or recur-
sively.

Refine(t, i, dir)

if t.leaf then Create children for t
∀v ∈ t : if v.depth < i+ 1 then
GetRing(v, i)
Update(v, i)
∀m ∈ N(v, i+ 1, 1) :
Update(m, i)
if m.finest ≥ i+ 1 then
forced := true

if dir and Flat(t) < εS and not forced then
Delete children of t

else
∀t ∈ current : t.restrict := true

Update(v, i)
v.s[i+ 1] := subd(v, i)
v.depth := i+ 1
if v.finest ≥ i+ 1 then
v.s[i+ 1] += v.F (i+ 1) ∗ v.d[i+ 1]

The condition v.depth = i+ 1 indicates whether an earlier call to
Refine already recomputed si+1(v). If not, call GetRing(v, i)
and Update(v, i) to do so. In case a detail vector lives at v at level
i (v.finest ≥ i + 1) add it in. Next compute si+1(m) for mid-
dle vertices on level i + 1 around v (m ∈ N(v, i + 1, 1), where
N(v, i, l) is the l-ring neighborhood of vertex v at level i). If m
has to be calculated, compute subd(m, i) and add in the detail if it
exists and record this fact in the flag forced which will prevent unre-
finement later. At this point, all si+1 have been recomputed for the
vertices and middle vertices of t. Unrefine t and delete its children
if Refine was called directly, the triangle is sufficiently flat, and
none of the middle vertices contain details (i.e., forced = false).
The list current functions as a cache holding triangles from level
i − 1 which are temporarily refined to build a 1-ring around the
vertices of t. If after processing all vertices and middle vertices of
t it is decided that t will remain refined, none of the coarser-level
triangles from current can be unrefined without violating restric-
tion. Thus t.restrict is set for all of them. The function Flat(t)
measures how close to planar the corners and edge middle vertices
of t are.

Finally, GetRing(v, i) ensures that a complete ring of triangles
on level i adjacent to the vertex v exists. Because triangles on level
i are restricted triangles all triangles on level i − 1 that contain v
exist (precondition). At least one of them is refined, since other-
wise there would be no reason to call GetRing(v, i). All other
triangles could be leaves or temporarily refined. Any triangle that
was already temporarily refined may become permanently refined
to enforce restriction. Record such candidates in the current cache
for fast access later.

GetRing(v, i)

∀t ∈ T i−1 with v ∈ t :
if t.leaf then
Refine(t, i− 1, false); temptri .append(t)
t.restrict := false; t.temp := true

if t.temp then
current .append (t)



4.3 Local Synthesis
Even though the above algorithms are adaptive, they are still run ev-
erywhere. During an edit, however, not all of the surface changes.
The most significant economy can be gained from performing anal-
ysis and synthesis only over submeshes which require it.

Assume the user edits level l and modifies the points sl(v) for
v ∈ V ∗l ⊂ V l. This invalidates coarser level values si and di for
certain subsets V ∗i ⊂ V i, i ≤ l, and finer level points si for subsets
V ∗i ⊂ V i for i > l. Finer level detail vectors di for i > l remain
correct by definition. Recomputing the coarser levels is done by
local incremental analysis described in Section 4.4, recomputing
the finer level is done by local synthesis described in this section.

The set of vertices V ∗i which are affected depends on the support
of the subdivision scheme. If the support fits into an m-ring around
the computed vertex, then all modified vertices on level i + 1 can
be found recursively as

V ∗i+1 =
⋃

v∈V ∗i
N(v, i+ 1,m).

We assume that m = 2 (Loop-like schemes) or m = 3 (Butterfly
type schemes). We define the subtriangulation T∗i to be the subset
of triangles of T i with vertices in V ∗i.
LocalSynthesis is only slightly modified from

AdaptiveSynthesis: iteration starts at level l and iter-
ates only over the submesh T∗i.

4.4 Local Incremental Analysis
After an edit on level l local incremental analysis will recompute
si(v) and di(v) locally for coarser level vertices (i ≤ l) which are
affected by the edit. As in the previous section, we assume that
the user edited a set of vertices v on level l and call V∗i the set of
vertices affected on level i. For a given vertex v ∈ V∗i we define
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Figure 11: Sets of even vertices affected through smoothing by ei-
ther an even v or odd m vertex.

Ri−1(v) ⊂ V i−1 to be the set of vertices on level i − 1 affected
by v through the smoothing operator H . The sets V∗i can now be
defined recursively starting from level i = l to i = 0:

V ∗i−1 =
⋃

v∈V ∗i
Ri−1(v).

The set Ri−1(v) depends on the size of the smoothing stencil and
whether v is even or odd (cf. Fig. 11). If the smoothing filter
is 1-ring, e.g., Gaussian, then Ri−1(v) = {v} if v is even and
Ri−1(m) = {ve1, ve2} if m is odd. If the smoothing filter is 2-
ring, e.g., Taubin, then Ri−1(v) = {v} ∪ {vk | 1 ≤ k ≤ K}
if v is even and Ri−1(m) = {ve1, ve2, vf1, vf2} if v is odd. Be-
cause of restriction, these vertices always exist. For v ∈ V i and
v′ ∈ Ri−1(v) we let c(v, v′) be the coefficient in the analysis sten-
cil. Thus

(H si)(v′) =
∑

v|v′∈Ri−1(v)

c(v, v′)si(v).

This could be implemented by running over the v′ and each time
computing the above sum. Instead we use the dual implementation,
iterate over all v, accumulating (+=) the right amount to si(v′) for
v′ ∈ Ri−1(v). In case of a 2-ring Taubin smoother the coefficients
are given by

c(v, v) = (1− µ) (1− λ) + µλ/6

c(v, vk) = µλ/6K

c(m, ve1) = ((1− µ)λ+ (1− λ)µ+ µλ/3)/K

c(m, vf1) = µλ/3K,

where for each c(v, v′), K is the outdegree of v′.
The algorithm first copies the old points si(v) for v ∈ V ∗i and

i ≤ l into the storage location for the detail. If then propagates
the incremental changes of the modified points from level l to the
coarser levels and adds them to the old points (saved in the detail
locations) to find the new points. Then it recomputes the detail
vectors that depend on the modified points.

We assume that before the edit, the old points sl(v) for v ∈
V ∗l were saved in the detail locations. The algorithm starts out by
building V ∗i−1 and saving the points si−1(v) for v ∈ V ∗i−1 in
the detail locations. Then the changes resulting from the edit are
propagated to level i − 1. Finally S si−1 is computed and used to
update the detail vectors on level i.

LocalAnalysis(i)

∀v ∈ V ∗i : ∀v′ ∈ Ri−1(v) :
V ∗i−1 ∪= {v′}
v′.d[i− 1] := v′.s[i− 1]
∀v ∈ V ∗i : ∀v′ ∈ Ri−1(v) :
v′.s[i− 1] += c(v, v′) ∗ (v.s[i]− v.d[i])
∀v ∈ V ∗i−1 :
v.d[i] = v.F (i)t ∗ (v.s[i]− subd(v, i− 1))
∀m ∈ N(v, i, 1) :
m.d[i] = m.F (i)t ∗ (m.s[i]− subd(m, i− 1))

Note that the odd points are actually computed twice. For the Loop
scheme this is less expensive than trying to compute a predicate to
avoid this. For Butterfly type schemes this is not true and one can
avoid double computation by imposing an ordering on the triangles.
The top level code is straightforward:

LocalAnalysis

∀v ∈ V ∗l : v.d[l] := v.s[l]
for i := l downto 0
LocalAnalysis(i)

It is difficult to make incremental local analysis adaptive, as it is
formulated purely in terms of vertices. It is, however, possible to
adaptively clean up the triangles affected by the edit and (un)refine
them if needed.

4.5 Adaptive Rendering
The adaptive rendering algorithm decides which triangles will be
drawn depending on the rendering performance available and level
of detail needed.

The algorithm uses a flag t.draw which is initialized to false,
but set to true as soon as the area corresponding to t is drawn.
This can happen either when t itself gets drawn, or when a set of
its descendents, which cover t, is drawn. The top level algorithm
loops through the triangles starting from the level n− 1. A triangle



is always responsible for drawing its children, never itself, unless it
is a coarsest-level triangle.

AdaptiveRender

for i = n− 1 downto 0
∀t ∈ T i : if not t.leaf then
Render(t)

∀t ∈ T 0 : if not t.draw then
displaylist.append(t)

T-vertex

Figure 12: Adaptive rendering: On the left 6 triangles from level i,
one has a covered child from level i + 1, and one has a T-vertex.
On the right the result from applying Render to all six.

The Render(t) routine decides whether the children of t have to be
drawn or not (cf. Fig.12). It uses a function edist(m)which mea-
sures the distance between the point corresponding to the edge’s
middle vertex m, and the edge itself. In the when case any of the
children of t are already drawn or any of its middle vertices are far
enough from the plane of the triangle, the routine will draw the rest
of the children and set the draw flag for all their vertices and t. It
also might be necessary to draw a triangle if some of its middle
vertices are drawn because the triangle on the other side decided
to draw its children. To avoid cracks, the routine cut(t) will cut
t into 2, 3, or 4, triangles depending on how many middle vertices
are drawn.

Render(t)

if (∃ c ∈ t.child | c.draw = true
or ∃m ∈ t.mid vertex | edist(m) > εD) then
∀c ∈ t.child :
if not c.draw then

displaylist.append (c)
∀v ∈ c : v.draw := true

t.draw := true
else if ∃m ∈ t.mid vertex | m.draw = true
∀t′ ∈ cut(t) : displaylist.append(t′)
t.draw := true

4.6 Data Structures and Code
The main data structure in our implementation is a forest of trian-
gular quadtrees. Neighborhood relations within a single quadtree
can be resolved in the standard way by ascending the tree to the
least common parent when attempting to find the neighbor across a
given edge. Neighbor relations between adjacent trees are resolved
explicitly at the level of a collection of roots, i.e., triangles of a
coarsest level graph. This structure also maintains an explicit rep-
resentation of the boundary (if any). Submeshes rooted at any level
can be created on the fly by assembling a new graph with some set
of triangles as roots of their child quadtrees. It is here that the ex-
plicit representation of the boundary comes in, since the actual trees

are never copied, and a boundary is needed to delineate the actual
submesh.

The algorithms we have described above make heavy use of
container classes. Efficient support for sets is essential for a fast
implementation and we have used the C++ Standard Template Li-
brary. The mesh editor was implemented using OpenInventor and
OpenGL and currently runs on both SGI and Intel PentiumPro
workstations.

Figure 13: On the left are two meshes which are uniformly sub-
divided and consist of 11k (upper) and 9k (lower) triangles. On
the right another pair of meshes mesh with approximately the same
numbers of triangles. Upper and lower pairs of meshes are gen-
erated from the same original data but the right meshes were op-
timized through suitable choice of εS . See the color plates for a
comparison between the two under shading.

5 Results
In this section we show some example images to demonstrate vari-
ous features of our system and give performance measures.

Figure 13 shows two triangle mesh approximations of the Ar-
madillo head and leg. Approximately the same number of triangles
are used for both adaptive and uniform meshes. The meshes on the
left were rendered uniformly, the meshes on the right were rendered
adaptively. (See also color plate 15.)

Locally changing threshold parameters can be used to resolve an
area of interest particularly well, while leaving the rest of the mesh
at a coarse level. An example of this “lens” effect is demonstrated
in Figure 14 around the right eye of the Mannequin head. (See also
color plate 16.)

We have measured the performance of our code on two plat-
forms: an Indigo R10000@175MHz with Solid Impact graphics,
and a PentiumPro@200MHz with an Intergraph Intense 3D board.



We used the Armadillo head as a test case. It has approximately
172000 triangles on 6 levels of subdivision. Display list creation
took 2 seconds on the SGI and 3 seconds on the PC for the full
model. We adjusted εR so that both machines rendered models at
5 frames per second. In the case of the SGI approximately 113,000
triangles were rendered at that rate. On the PC we achieved 5
frames per second when the rendering threshold had been raised
enough so that an approximation consisting of 35000 polygons was
used.

The other important performance number is the time it takes to
recompute and re-render the region of the mesh which is changing
as the user moves a set of control points. This submesh is rendered
in immediate mode, while the rest of the surface continues to be
rendered as a display list. Grabbing a submesh of 20-30 faces (a
typical case) at level 0 added 250 mS of time per redraw, at level 1
it added 110 mS and at level 2 it added 30 mS in case of the SGI.
The corresponding timings for the PC were 500 mS, 200 mS and
60 mS respectively.

Figure 14: It is easy to change εS locally. Here a “lens” was applied
to the right eye of the Mannequin head with decreasing εS to force
very fine resolution of the mesh around the eye.

6 Conclusion and Future Research
We have built a scalable system for interactive multiresolution edit-
ing of arbitrary topology meshes. The user can either start from
scratch or from a given fine detail mesh with subdivision connec-
tivity. We use smooth subdivision combined with details at each
level as a uniform surface representation across scales and argue
that this forms a natural connection between fine polygonal meshes
and patches. Interactivity is obtained by building both local and
adaptive variants of the basic analysis, synthesis, and rendering al-
gorithms, which rely on fast lazy evaluation and tree pruning. The
system allows interactive manipulation of meshes according to the
polygon performance of the workstation or PC used.

There are several avenues for future research:
• Multiresolution transforms readily connect with compression.

We want to be able to store the models in a compressed format
and use progressive transmission.

• Features such as creases, corners, and tension controls can easily
be added into our system and expand the users’ editing toolbox.

• Presently no real time fairing techniques, which lead to more
intuitive coarse levels, exist.

• In our system coarse level edits can only be made by dragging
coarse level vertices. Which vertices live on coarse levels is
currently fixed because of subdivision connectivity. Ideally the
user should be able to dynamically adjust this to make coarse
level edits centered at arbitrary locations.

• The system allows topological edits on the coarsest level. Algo-
rithms that allow topological edits on all levels are needed.

• An important area of research relevant for this work is genera-
tion of meshes with subdivision connectivity from scanned data
or from existing models in other representations.
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[3] CERTAIN, A., POPOVIĆ, J., DEROSE, T., DUCHAMP, T.,
SALESIN, D., AND STUETZLE, W. Interactive Multiresolu-
tion Surface Viewing. In SIGGRAPH 96 Conference Proceed-
ings, H. Rushmeier, Ed., Annual Conference Series, 91–98,
Aug. 1996.

[4] DAHMEN, W., MICCHELLI, C. A., AND SEIDEL, H.-
P. Blossoming Begets B-Splines Bases Built Better by B-
Patches. Mathematics of Computation 59, 199 (July 1992),
97–115.

[5] DE BOOR, C. A Practical Guide to Splines. Springer, 1978.
[6] DOO, D., AND SABIN, M. Analysis of the Behaviour of

Recursive Division Surfaces near Extraordinary Points. Com-
puter Aided Design 10, 6 (1978), 356–360.

[7] DYN, N., LEVIN, D., AND GREGORY, J. A. A Butterfly
Subdivision Scheme for Surface Interpolation with Tension
Control. ACM Trans. Gr. 9, 2 (April 1990), 160–169.

[8] ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNS-
BERY, M., AND STUETZLE, W. Multiresolution Analysis of
Arbitrary Meshes. In Computer Graphics Proceedings, An-
nual Conference Series, 173–182, 1995.

[9] FINKELSTEIN, A., AND SALESIN, D. H. Multiresolution
Curves. Computer Graphics Proceedings, Annual Conference
Series, 261–268, July 1994.

[10] FORSEY, D., AND WONG, D. Multiresolution Surface Re-
construction for Hierarchical B-splines. Tech. rep., University
of British Columbia, 1995.

[11] FORSEY, D. R., AND BARTELS, R. H. Hierarchical B-Spline
Refinement. Computer Graphics (SIGGRAPH ’88 Proceed-
ings), Vol. 22, No. 4, pp. 205–212, August 1988.

[12] GORTLER, S. J., AND COHEN, M. F. Hierarchical and Vari-
ational Geometric Modeling with Wavelets. In Proceedings
Symposium on Interactive 3D Graphics, May 1995.

[13] HOPPE, H. Progressive Meshes. In SIGGRAPH 96 Con-
ference Proceedings, H. Rushmeier, Ed., Annual Conference
Series, 99–108, August 1996.

[14] HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEAD, M.,
JIN, H., MCDONALD, J., SCHWEITZER, J., AND STUET-
ZLE, W. Piecewise Smooth Surface Reconstruction. In Com-
puter Graphics Proceedings, Annual Conference Series, 295–
302, 1994.

[15] HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J.,
AND STUETZLE, W. Mesh Optimization. In Computer
Graphics (SIGGRAPH ’93 Proceedings), J. T. Kajiya, Ed.,
vol. 27, 19–26, August 1993.

[16] KOBBELT, L. Interpolatory Subdivision on Open Quadrilat-
eral Nets with Arbitrary Topology. In Proceedings of Euro-
graphics 96, Computer Graphics Forum, 409–420, 1996.



Figure 15: Shaded rendering (OpenGL) of the meshes in Figure 13.

Figure 16: Shaded rendering (OpenGL) of the meshes in Figure 14.

[17] KRISHNAMURTHY, V., AND LEVOY, M. Fitting Smooth Sur-
faces to Dense Polygon Meshes. In SIGGRAPH 96 Confer-
ence Proceedings, H. Rushmeier, Ed., Annual Conference Se-
ries, 313–324, August 1996.

[18] KURIHARA, T. Interactive Surface Design Using Recursive
Subdivision. In Proceedings of Communicating with Virtual
Worlds. Springer Verlag, June 1993.

[19] LOOP, C. Smooth Subdivision Surfaces Based on Triangles.
Master’s thesis, University of Utah, Department of Mathemat-
ics, 1987.

[20] LOOP, C. Smooth Spline Surfaces over Irregular Meshes. In
Computer Graphics Proceedings, Annual Conference Series,
303–310, 1994.

[21] LOUNSBERY, M., DEROSE, T., AND WARREN, J. Multires-
olution Analysis for Surfaces of Arbitrary Topological Type.
Transactions on Graphics 16, 1 (January 1997), 34–73.

[22] PETERS, J. C1 Surface Splines. SIAM J. Numer. Anal. 32, 2
(1995), 645–666.

[23] PULLI, K., AND LOUNSBERY, M. Hierarchical Editing and
Rendering of Subdivision Surfaces. Tech. Rep. UW-CSE-
97-04-07, Dept. of CS&E, University of Washington, Seattle,
WA, 1997.
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Digital Geometry 
Processing
Denis Zorin, NYU
Jianbo Peng, Lexing Ying, 
Henning Biermann, Aaron 
Hertzmann

Problems
Idea: transfer image processing 

techniques to geometry
■ two examples: denoising and texture 

synthesis
■ problems: lack of parameterization, 
global direction fields, rectangular 

sampling pattern 
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Denoising
Problem formulation:
Given

■ signal contaminated with noise
■ signal  and noise model 

Find
■ best possible approximation to the 

original signal

Models
Simple example:

■ signal low-frequency
■ noise  high-frequency
■ ideal denoising = low-pass filtering
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Image denoising
Transform to a “good” domain
e.g. wavelet thresholding

■ wavelet transform
■ eliminate small coefficients
■ inverse wavelet transform

Problem
■ assumes any large coefficient useful

Approach
Statistical model for wavelet 

coefficients
■ peak at zero 
■ heavy tails
■ strong spatial magnitude

correlation
■ correlation across scales 
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GSM model
Gaussian scale mixture 

■ General: vector ; of coefficients near a 
point

■ ] is  (random) scalar factor

■ 8 is Gaussian vector              

;  
S
]8

Denoising
Simplest case

■ no local correlation:
■ is Gaussian
■ noisy signal:
■ Wiener filtering - best we can do if noise 

is Gaussian
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Estimating scale
Need to know noise and scale

■ distribution

■ max. likelihood estimate from a vector <
of coeffs on neighborhood of size 1 :
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Rescaling
Divide by estimated scale
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Moving to geometry
Need to generalize

■ multiscale decomposition
observation: does not have 
to be a basis

■ directional filters
observation: do not need global orientation,
only consistency in each neighborhood

■ Everything else works

Semiregular meshes
Assumption: reparameterize first



7

Hierarchy
Subdivision connectivity

■ can define multiscale decompositions

Multiscale decomposition
Overrepresentation
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Local frame
Computed from the coarser level

■ more natural representation
■ separate tangent from normal 

component

Directional filters 
Use 6 directions

■ most natural for semiregular
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Distributions 
Similar to images

Algorithm overview 
Same basic steps as for images
Given estimated noise

■ transform to multiscale representation
■ for each directional coefficient for every 

scale: 
Estimate the scale factor z  using immediate 

neighbors
apply Wiener-like filtering

■ transform back
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Local alignment
No global bands

■ when estimating z for a given direction,
apply aligned filters to neighbors:

How it works 
Correlation taken into account 

through scale:

■ if  scale large, no attenuation
■ if small, scale is zero and coefficient is 

eliminated
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Results
Artificial data, “12%” noise

Results
before

after
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Results

original

low est. noise high est. noise

Results 

Fragment of Michelangelo’s David, 0.29 mm resolution
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Results

Fragment of Michelangelo’s David, 0.29 mm resolution

Results

original denoised
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Curvature diffusion 
Deterministic approach

■ evolve surface along estimated normal
at rate proportional to curvature

■ to use for denoising, add anisotropic
diffusion tensor

■ tensor components depend on 
estimated principal curvatures (e.g. big 
ratio is indication of an edge)

■ need to solve a PDE

Comparison
Difficult to compare; similar 

results for suitable parameters
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Open questions 
Only a first step

■ sampling
■ validation of the model
■ interscale coherence
■ integrate with compression

Texture synthesis
Much recent work

■ DeBonet (1997), Efros and Leung (1999), Wei
and Levoy (2000), Ashikhmin (2001)

A B
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Texture synthesis
Goal: synthsesis on surfaces 

directly

Texture model

Li-Yi Wei, 2000 
Textures are

■ local
■ stationary

Model textures by 
■ local spatial 

neighborhoods
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Basic algorithm
Exhaustive search 

image by Li-Yi Wei, Stanford University

Basic algorithm
Exhaustive search 

image by Li-Yi Wei, Stanford University
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Basic algorithm
Exhaustive search 

image by Li-Yi Wei, Stanford University

Basic algorithm
Exhaustive search 

image by Li-Yi Wei, Stanford University
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Basic algorithm
Exhaustive search 

image by Li-Yi Wei, Stanford University

Basic algorithm
Exhaustive search 

image by Li-Yi Wei, Stanford University
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Basic algorithm
Exhaustive search 

image by Li-Yi Wei, Stanford University

Basic algorithm
Exhaustive search 

image by Li-Yi Wei, Stanford University
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Basic algorithm
Exhaustive search 

image by Li-Yi Wei, Stanford University

image by Li-Yi Wei, Stanford University

Basic algorithm
Exhaustive search 



22

Multiscale synthesis

image by Li-Yi Wei, Stanford University

Multiscale synthesis

image by Li-Yi Wei, Stanford University

Synthesis
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Multiscale synthesis

image by Li-Yi Wei, Stanford University

Multiscale synthesis

image by Li-Yi Wei, Stanford University

Compare
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Multiscale synthesis

image by Li-Yi Wei, Stanford University

Multiscale synthesis

image by Li-Yi Wei, Stanford University
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Multiscale synthesis

image by Li-Yi Wei, Stanford University

Multiscale synthesis

image by Li-Yi Wei, Stanford University
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Multiscale synthesis

image by Li-Yi Wei, Stanford University

Multiscale synthesis

image by Li-Yi Wei, Stanford University
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Acceleration
Bottleneck: search for best match

■ best (so far) solution: TSVQ
■ IMPORTANT: 

requires identical sampling pattern for 
all neighborhoods

1      2    3    4     5

6      7 8    9   10

11  12

Neighborhood

Generalizing to surfaces
Problems

■ local sampling patterns may be different
■ sampling density may vary
■ anisotropic sampling
■ traversal order undefined 

Solution
■ treat texture as continuous function
■ resample as necessary
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Charts
Atlas for the surface

■ every point is covered
■ charts large enough for neighborhoods 

to fit inside
■ should be smooth

Subdivision charts
Use characteristic maps



29

Chart resampling
Correct for distortion

■ assume sampling pattern around [ is 
small enough in world space

■ compute the linear approximation $ to 
the chart map at [

■ sample in the chart space using a pattern 
which is mapped by A to the one we 
need

Chart sampling
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Chart sampling

Chart sampling
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Chart sampling

Algorithm
Assume example texture has 

regular connectivity

To synthesize sample  [:
■ pick a chart
■ resample already synthesized 

texture on regular pattern  using 
charts

■ search for best match using TSVQ
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Inverse sampling
Sometimes need to resample 

example on irregular pattern

Results
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Results

example multiscale coherent

Results

synthesized geometry
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Results

transparency geometry

Results
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Summary
Adapting image processing 

algorithms to surface setting
■ need to handle irregular sample patterns
■ can use only local orientation
■ need to take non-uniform density and 

anisotropy into account
■ need to resample all the time
■ no good sampling theory





A Simple Algorithm for Surface Denoising
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Abstract

We present a simple denoising technique for geometric data rep-
resented as a semiregular mesh, based on locally adaptive Wiener
filtering. The degree of denoising is controlled by a single param-
eter (an estimate of the relative noise level) and the time required
for denoising is independent of the magnitude of the estimate. The
performance of the algorihm is sufficiently fast to allow interactive
local denoising.

1 Introduction
The complexity of the models used in computer graphics, visual-
ization and geometric modeling applications constantly increases.
It becomes more and more difficult to create such models by hand,
and 3D scanning is emerging as an attractive alternative. How-
ever, the raw data produced by 3D scanners (range images or point
clouds) are usually far from usable in any application. Considerable
number of algorithms were developed for processing such data. A
typical processing pipeline includes several stages:

� registration of raw data to create a single point cloud;
� conversion of the point cloud to an arbitrary fine polygonal mesh;
� decimation and reparameterization of the resulting mesh.

While the reparameterization step is not essential for every appli-
cation, it is often desirable when a complex model has to be mod-
ified, stored and displayed interactively. As it was recently shown
[10, 9], reparameterization combined with correctly chosen com-
pression techniques results in substantial reduction in error (by fac-
tor of four) for compressed geometry compared to methods preserv-
ing fine mesh connectivity.

This result is not surprising if we consider the geometric data
represented by a mesh from the informational point of view. In
contrast to images, there are three distinct types of information as-
sociated with a mesh: connectivity (which vertices are connected
by edges), geometry (vertex positions sampled from the original
surface), and topology (topological structure of the surface repre-
sented implicitly by connectivity). It should be noted that only ge-
ometry and topology carry information about the original surface.
Connectivity is not explicitly present in the original model and is
introduced as an artifact of the algorithms used to convert the point
cloud to a mesh.

If we adopt this point of view, there are three types of noise
present in the mesh data:
� Connectivity noise, which is the pretty much all of the connectiv-
ity information for surfaces of low genus. As the only information
about the original surface carried by connectivity is the topological
information, connectivity can be replaced by any other as long as
topology is preserved. All topological information we theoretically
need for a surface of genus 0 can be represented by a tetrahedron.
� Topological noise, which is created by the algorithms used to ex-
tract a mesh from the point cloud.
� Geometric noise, due to the errors in measurement and resampling
of the data at various processing stages.

Topology-preserving reparameterization can be thought of as re-
moving connectivity noise; recent work [8] addresses the problem

of topological noise. We focus on geometric noise removal, assum-
ing that the surface is already reparameterized. While our method
can be potentially applied before reparameterization, it works best
and is most natural for semiregular meshes.

Reparameterization greatly simplifies the problem, because the
surface can be considered as a function, and simple and efficient
signal processing approaches can be applied. If reparameterization
is ultimately performed on geometric data we believe that denoising
is best left to the last stage, because additional noise can be intro-
duced at the resampling stage. This is the case when our approach
applies. If reparameterization will not be performed, more com-
plex techniques for denoising on arbitrary meshes [2, 6] are more
appropriate.

The algorithm that we propose is based on recent work in im-
age denoising which uses locally adaptive Wiener filtering [16, 17,
21, 22]. The subbands of a multiscale representation are modeled
as a product of a Gaussian random vector with a hidden multiplier
variable. Estimation of the multiplier leads to the estimation of
the local variance and allows standard Wiener denoising. The re-
sulting algorithm is quite efficient, as it requires only a single pass
over the surface at each resolution level. It is controlled by a single
user-defined parameter, namely, an estimate of the noise magni-
tude. The performance does not depend on the magnitude of this
estimate, i.e. strong noise reduction takes exactly as much time
as moderate amount of denoising. Given an infrastructure for sup-
porting semiregular meshes it takes very little time to implement
(several hundred lines of code) and can be used for interactive local
denoising of a model.

1.1 Denoising

We start with formulating the problem more precisely. Given a
surface corrupted by geometric noise, our goal is to produce a new
surface which is as close as possible to the original one. This task
requires implicit or explicit assumptions (model) about the noise
and the surface.

It is useful to consider a simple 1D example to understand the
problem more clearly. If nothing is known about a 1D signal, it
cannot be denoised. However, if the signal contains no frequencies
above ! and the source of noise produces only frequencies above !,
low-pass filtering is an ideal denoising procedure. This is a simple
example of general pattern common for a wide class (but not all) of
denoising approaches: apply a transformation to represent the sig-
nal in a domain (in our case, frequency domain) where the noise is
well separated from the signal, use assumptions on the structure of
the transform coefficients of the signal and noise in order to remove
the noise, apply the inverse transform.

For real-world signals, the situation is more complex: these sig-
nals typically have spectra overlapping the spectrum of the noise,
and low-pass filtering is likely to remove important parts of the sig-
nal together with noise. Surface smoothing does precisely that for
surfaces [23, 4]. The way to achieve better results is to use addi-
tional information about the properties of the signal. A classical
example is wavelet thresholding methods for image processing [7].
These methods take advantage of the fact that wavelet bases have
good compression properties: in such bases, a typical non-noisy



image will have mostly small coefficients, and only few large ones.
Eliminating the small coefficients does not alter the reconstructed
image much. One reason for this is that natural images often consist
of large smooth areas (fine-level coefficients are small) separated by
sharp boundaries (fine-level coefficients are large), with boundaries
occupying only small area in images.

In contrast, the coefficient magnitude for noise is uniform and, as
the signal energy is distributed over a large number of coefficients,
each coefficient is likely to be small. This leads to the simple ba-
sic algorithm: apply a wavelet transform, threshold the coefficients
and apply the inverse transform. For a restricted class of signals
corrupted by white Gaussian noise a version of this procedure was
proven to be optimal [7]. Note that this procedure is likely to pre-
serve sharp transitions in a signal (edges for images, creases for
surfaces).

Nevertheless, it is clear that a part of the useful signal is still
removed. One can do better, however, by using additional assump-
tions. It was shown that Gaussian scale mixture (GSM) model is
very suitable for than the statistics of wavelet coefficients of natural
images [24, 22]. The combination of this model with Wiener fil-
tering leads to better recovery of the original image. The resulting
algorithm is not much more complex than the wavelet thresholding
described above — the only additional step involved is local esti-
mation of the signal variance. In the case of Gaussian noise the
procedure is nearly optimal.

It turns out that GSM models also appear to reflect properly the
statistics of multiscale representations of surfaces. Thus it is natu-
ral to apply the GSM-based denoising procedures to surfaces. The
algorithm we propose is based on the general ideas of the image de-
noising algorithms but significantly differs from them in a number
of aspects as detailed below.

2 Previous Work
Our algorithm primarily on work in image processing; relatively
little has been done on surface denoising. Recent results include
Clarenz et al. [2] on denoising of arbitrary meshes and Desbrun et
al. [5] on denoising hight fields. In both cases, anisotropic curva-
ture diffusion techniques are used. Our method is fundamentally
different and difficult to compare directly to the diffusion-based ap-
proaches. Diffusion-based denoising is best regarded as a combi-
nation of smoothing and edge enhancement. It is relatively diffi-
cult to predict the scale of the noise that will be removed, and the
amount of denoising depends on the algorithm running time. At the
same time, as demonstrated in [2], curvature flow-based methods
can be used on arbitrary meshes, while we assume reparameteriza-
tion on semiregular meshes. For certain choices of parameters, our
method produces results similar to anisotropic curvature diffusion.
The methods are compared in greater detail in Section 7.

Recent developments in image denoising show that locally adap-
tive Wiener filtering is a very powerful technique. This approach
was first developed in pixel domain [12, 11] and then extended to
the multiresolution domain [16, 17] which allowed further improve-
ment of the results. Local Wiener filtering uses a local estimate
of the variance in either the spatial or the multiresolution domain.
Wainwright and Simoncelli proposed a model that allows easy esti-
mation of local variance and captures well the local statistical prop-
erties of wavelet coefficients of natural images [24]. This model
is based on the class of random variables known as Gaussian scale
mixtures (GSM). In the GSM model, groups of wavelet coefficients
correspond to a product of a Gaussian random vector with a hid-
den multiplier variable. Similar models have been independently
proposed in [15, 3]. The GSM approach combined with Wiener fil-
tering was successfully implemented for image denoising [22]. We
suggest a similar technique for noise removal on natural surfaces.

3 Overview of the algorithm

Our denoising procedure follows a common pattern described in
Section 1.1. First, we apply a multiresolution transform described
in Section 4 to a given noisy surface. We then use the GSM sta-
tistical model of the transform coefficients to distinguish the noise
from the signal. The details of this step are given in Section 5.
Finally, we reconstruct the surface from the denoised coefficients.
See Section 6 for the complete description of the algorithm.

4 Multiresolution Surfaces

In this section, we describe in greater detail our assumptions about
the parametric surface representation, and the specific representa-
tion we use.

It is generally sufficient to assume that the initial mesh was repa-
rameterized on a mesh with semi-regular connectivity. The connec-
tivity of such meshes can be obtained if we start with a relatively
coarse mesh, and refine each face of such mesh regularly, in the
simplest case, by recursive quadrisection of faces. The latter, how-
ever, not essential for our algorithm: any regular refinement can be
used.

As a starting point, we use a Laplacian-pyramid multiresolution
representation based on Loop subdivision . We refer the reader to
[18, 25] for the details of implementation. The surface is repre-
sented by the coarsest level and the details at each level of reso-
lution. The process of converting the finest-resolution data to the
sequence of detail sets and the coarsest level mesh is called analy-
sis. The process of reconstructing a surface from the coarse mesh
and details is called synthesis The two processes are applied recur-
sively, with analysis proceeding from finer to coarser levels, and
synthesis from coarser to finer. A single step of both processes is
illustrated in Figure 1.

For analysis, a smoothing filter is required in addition to subdi-
vision rules. We use a simple Laplacian filter for smoothing.

It is important to note that the details at a finer level of reso-
lution are represented in local frames computed from the previous
coarser level. This is a valuable feature for surface editing and a
natural way to represent surfaces: details are separated into tangen-
tial and normal components and become invariant witrh respect to
rigid transforms. However, addition of the local frame makes the
transform nonlinear. Our comparison of denoising with and with-
out local frame transformations was inconclusive: it is still unclear
if there is a substantial advantage in using local frames other than
having a geometrically invariant result.

analysis synthesis

smooth

subdivide

coarse level

subdivide

+

4

fine level
+

   dir.
filter1

    dir.
filter m

local  
frame

Figure 1: Synthesis and analysis diagrams for multiresolution sur-
faces.

We use an important modification to the pyramid based on the
idea of steerable pyramids [20, 19]: a single detail band is decom-
posed into multiple directional bands, using directional filters (Fig-
ure 1). The number of directional bands m can be chosen arbitrar-
ily by choosing the angular step �m. To reconstruct the signal the
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Figure 2: Directional decomposition of the details and the filter
mask for a directional filter, �i = cos( 2i�

k
� �m).

directional bands are simply added up to produce the detail. Intro-
ducing these directional bands is a crucial element of the algorithm.
Clearly, the subbands are interdependent, and we need to store only
two to be able to reconstruct the result of filtering in any direction.

5 GSM Model for Denoising Multiscale Data

As in the case of natural images, marginal distributions of the mul-
tiresolution coefficients of natural surfaces turn out to be sharp-
peaked at zero and heavy-tailed (see Figure 3). The peak at zero
is produced by the smooth regions, while heavy tails correspond
to the slow decay of the coefficients at the edges. We propose to
model this distribution by a Gaussian scale mixture process. The
GSM random variables include several well-known sharp peaked
and heavy tailed distributions such as generalized Gaussians, the
�-stable family, and the Student t-variables [24]. One would ex-
pect a GSM model to be a good approximation in our case.

We now describe GSM in detail. A random vector X is said to be
a Gaussian scale mixture if it is a product of two random variables:
X =

p
zU , where z is a positive scalar random variable and U is a

zero-mean Gaussian random vector with covariance Cu [1]. U and
z are assumed to be independent. The probability density of a GSM
variable is:

Px(X) =

Z
1

(2�)N=2 jzCuj1=2 exp

�
�XTC�1

u X

2z

�
Pz(z) dz;

(1)
where N is the length of vectors U and X . Notice that normalized
GSM variable X=

p
z is Gaussian distributed which allows easy es-

timation of the statistical properties of the data. In particular, the
Wiener filtering of the noisy GSM data should be close to optimal.

We assume that the directional detail coefficients in a single-ring
neighborhood of a vertex on each level of a multiresolution mesh
follows the GSM model. We also assume independence of the mul-
tipliers corresponding to different neighborhoods, even though the
neighborhoods are overlapping. Moreover, in order to simplify the
computations we treat both the coefficients of the noise and the sig-
nal in each neighborhood as uncorrelated (but not necessarily in-
dependent) and set their covariance matrices to be multiples of the
identity Cu = �2uI , Cw = �2wI; we assume the variance of noise
known (in practice, it is estimated by the user). While it is possible
to vary �w , we use a single value for the whole surface which is a
reasonable assumption for scanned models.

One can test how well the GSM model describes actual data.
Let X be a vector corresponding to a single ring of pyramid coef-
ficients around a vertex of a “clean” surface, with x the coefficient
at the center of the ring. If the model is correct and there is a good
estimate bz(X) of z(X) then the distribution of the normalized co-

efficient x0 = x=
pbz(X) should be close to a Gaussian. We use

the maximum likelihood estimator for the multiplier [24, 16, 22]:

bz(X) = (XTC�1

u X)=N:
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Figure 3: Histograms and normal probability plots of the pyramid
coefficients before and after normalization of each coefficient by
the estimate of hidden multiplier

pbz.

Within our assumptions Cu = �2uI and �2ubz(X) = XTX
N

is just
a local estimate of the variance of x. Figure 3 shows the marginal
histograms and normal probability plots of x and x0. Presented data
comes from one component of the third level of the multiresolution
decomposition of the denoised surface (the model of a dog); similar
results were obtained for a number of other scanned models. The
histogram of the normalized coefficients is nearly Gaussian, and its
corresponding normal probability plot lies nearly along a line. Thus
the GSM model does a reasonable job approximating the data.

Our main goal is to estimate the multiplier z in the presence of
noise. This will allow us to compute the variance of each element
and use the Wiener filter to remove the noise. Suppose that vector Y
is obtained from X by adding Gaussian white noise with variance
�2w and mean 0, Y = X + �wW . If X is a GSM vector then
each observed noisy coefficient can be represented as y =

p
zu+

�ww, where �2w is the variance of the noise and w has Gaussian
distribution with variance 1 and mean 0. If the value of z were
known, then y would also be Gaussian distributed, and the optimal
estimate of x would be the linear (Wiener) solution:

bx =
z�2u

z�2u + �2w
y: (2)

We use the maximum likelihood estimator in order to obtainbz(Y ), bz(Y ) =
�
1=�2u

� �
Y TY=N � �2w

�
: The derivation of this

result is given in [16]. When applying this formula to the real data,
one often gets a small negative value for bz(Y ). This happens be-
cause the neighborhood is not large enough to capture the statistics
of the data or the estimated noise level is too large. In this cases
we set bz(Y ) to zero. We estimate the variance of the center of a
neighborhood Y as

bz�2u = max
�
Y TY=N � �2w; 0

�
: (3)

Equations (2), (3) are used in our denoising algorithm.

6 Denoising Algorithm

We implemented the results of previous sections in the denoising
procedure. It consists of there steps: 1) multiresolution decomposi-
tion (Section 4). 2) Noise removal using formulas (2), (3) on each
level of the decomposition. 3) Reconstruction.

To use formulas (2) and (3) one needs to know the variance of the
noise �2w. This is the parameter supplied by the user. In Section 7,
we show the results for various values of �w . It is also possible
to choose different numbers m of directional components for the
filters, but, not surprisingly, 6 is the best choice for semiregular
triangular meshes.
Denoising Algorithm
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Figure 4: Local alignment of directions

1. Perform analysis of the mesh as described in Section 4.
2. For the details at each level of the decomposition
a) Compute the aligned directional components of the neighborhood
of each vertex in the detail mesh in m directions.
b) Estimate the variance of each directional coefficient using for-
mula (3); if the result is negative set the variance to zero.
c) Replace each directional coefficient by its Wiener estimate (2).
d) Replace the value of the center with the combination of the m
denoised directional coefficients.
3. Reconstruct the surface mesh.

Unlike images, for which directional components can be chosen
to be oriented consistently along global directions, for general sur-
faces this is not possible. However, as our algorithm is local, only
local alignment is required. To choose the aligned directional com-
ponents, we assume that the single-ring neighborhood of a vertex
at a fixed refinement level is parameterized over a k-gon (Figure 4).
As shown in the figure, for an arbitrary edge fixed as the zero di-
rection one can pick corresponding directions for the filters for sur-
rounding vertices. The result of filtering in one of these directions
is simply a linear combination of two directional details.

7 Results and Discussion

Results of applying our algorithm to data with a high level of arti-
ficial noise added for several settings of �w are shown in Figure 5.
Other denoising results are shown in Figures 9–10. The input pa-
rameter �w (estimate of the noise level) was chosen as a percentage
of the average distance between the initial surface and the coarsest
surface. Timings are provided for a relatively slow machine (200
MHz SGI Indigo2).

Comparison with anisotropic curvature diffusion. For com-
parison, we have implemented anisotropic curvature diffusion as
described in [2]. Figure 9 demonstrates that for a certain choice of
estimated noise value our algorithm produces results visually sim-
ilar to anisotropic curvature diffusion [2, 5, 6]. The image was
chosen to be as similar as possible to the one shown in [2]. The
approaches based on statistical models (such as ours) and deter-
ministic approaches (such as anisotropic curvature diffusion) are
based on very different principles and, from mathematical point of
view, solve different problems; hence it is difficult to compare the
algorithms quantitatively.

The difference between the algorithms merits detailed discus-
sion. The idea of anisotropic curvature diffusion can be summa-
rized as follows: the denoised surface is obtained as the solution
at some time � of an anisotropic diffusion equation. The diffusion
tensor is anisotropic near edges, with zero diffusion perpendicular
to the edge and maximal along the edge. The edges are detected
at each time step using a principal curvature threshold, applied to
the curvature values obtained for a smoothed version of the surface.
There are three parameters determining the result: the time � , the

constant � controlling the amount of smoothing used before curva-
tures are computed and �, the edge detection threshold; � has less
impact on the result, so we restrict our attention to � and �.
Feature preservation. Both algorithms attempt to preserve impor-
tant surface features. Anisotropic curvature diffusion detects and
attempts to preserve and sharpen edges [2, 6]. Our algorithm has
implicit edge detection build in: if there is an edge passing through
a point in a certain direction, in orthogonal direction the variance
will be considerable and Wiener filtering will not reduce these co-
efficients by much if at all. The advantage of our approach is that
there is no global threshold � for curvature-controlling edge detec-
tion; this parameter is difficult to pick. This can be also regarded
as disadvantage as there is no direct edge detection control. The
best our algorithm can do is to preserve the noise perpendicular to
the edge near the edge; anisotropic curvature diffusion can enhance
edges. This is useful in the cases of man-made objects for which
a collection of smooth surfaces with sharp edges is a good model.
This is less useful and can be harmful for natural object, which sel-
dom have sharp edges. For such objects increasingly sharp edges
tend to appear at random locations.
Generality. Our algorithm relies on the multiresolution structure
of the mesh, hence applies only to models that were reparameter-
ized on semiregular meshes. In contrast, curvature diffusion works
on an arbitrary mesh. while it might be possible to generalize our
algorithm to hierarchies on irregular meshes, this would make it
significantly more complex.
Running time. With anisotropic curvature diffusion, if a large
amount of denoising is desired, large values of � should be used
and the algorithm takes longer, even if implicit integration and large
time steps are used. Our algorithm takes exactly the same time no
matter how much denoising is desired. For the specific example
shown in Figure 9, our conjugate-gradient implementation of cur-
vature diffusion is significantly slower than the GSM algorithm:
(260 sec. vs. 16 sec.) However, an efficient multigrid solver is
likely to make the times much closer. Our algorithm is fast enough
to enable interactive applications.
Locality. Our algorithm can be easily applied locally (the video
submitted with the paper shows an interactive application when the
noise is removed locally). It is not clear how anisotropic diffusion
will behave when applied locally.
Ease of implementation. As we have mentioned, our algorithm
takes very little effort to implement: it is a simple iteration over
vertices with filters applied to the immediate neighbors. By com-
parison, curvature diffusion requires a good solver running on arbi-
trary meshes to be efficient, and even the basic algorithm requires
more work.

8 Conclusions

We have presented a new algorithm for denoising of natural sur-
faces. It is based on a multiresolution steerable decomposition and
utilizes a GSM statistical model of the transform coefficients. The
results of our experiments are quite encouraging and compare fa-
vorably with other techniques; our algorithm ensures noise removal
while preserving essential geometrical features.

Our results are just a first step in applying the GSM model for
the denoising of surfaces. One can employ different multiresolution
decompositions and extend the denoising algorithm along the lines
suggested in [22]. In particular a non-trivial covariance structure of
the coefficients within each neighborhood can be used.

Our algorithm is based on the GSM assumption on the statistics
of the multiscale coefficients. We have observed that it is a rea-
sonable assumption for several models, but clearly more extensive
studies are necessary.
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original noisy mesh �w = 2:8%

Figure 9: Denoising a scanned and parameterized model of an ear
(335 thousand triangles, 360 thousand after parameterization).

original noisy mesh detail of noisy mesh

�w = 2:5% �w = 7:8%

Figure 10: Denoising a scanned and parameterized model of a dog
for different choices of �w (264 thousand triangles, 391 thousand
triangles after parameterization). Denoising time: 59 secs.

Many questions which have well-understood answers for images
(e.g. measure of difference between images) are much more dif-
ficult for surfaces and require further study to make it possible to
compare algorithms in a more quantitative manner.

Note on Figure 7: We believe the small scale random texture
visible on the surface is an artefact of the scanning and reconstruc-
tion process; it is similar in scale to the texture we have observed
on other objects scanned using Cyberware scanners; according to
Levoy et al. [13] the scale of the details on the surface of polished
marble is less than 30 nm, which is far less than the characteristic
texture size. On the other hand, the texture is too random and too
closely spaced (0.5-1 mm is the characteristic scale) to be chisel
marks which are more likely to be at least 2 mm wide [14].
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[16] M K Mihçak, I Kozintsev, K Ramchandran, and P Moulin. Low–complexity
image denoising based on statistical modeling of wavelet coefficients. IEEE
Trans. on Signal Processing, 6(12):300–303, December 1999.

[17] P Moulin and J Liu. Analysis of multiresolution image denoising schemes us-
ing a generalized Gaussian and complexity priors. IEEE Trans. Info. Theory,
45:909–919, 1999.

[18] K. Pulli and M. Lounsbery. Hierarchical editing and rendering of subdivision
surfaces. Technical Report UW-CSE-97-04-07, Dept. of CS&E, University of
Washington, Seattle, WA, 1997.

[19] E P Simoncelli and W T Freeman. The steerable pyramid: A flexible architecture
for multi-scale derivative computation. In Second Int’l Conf on Image Proc, vol-
ume III, pages 444–447, Washington, DC, October 1995. IEEE Sig Proc Society.

[20] E P Simoncelli, W T Freeman, E H Adelson, and D J Heeger. Shiftable multi-
scale transforms. IEEE Trans Information Theory, 38(2):587–607, March 1992.
Special Issue on Wavelets.

[21] V Strela. Denoising via block Wiener filtering in wavelet domain. In 3rd Euro-
pean Congress of Mathematics, Barcelona, July 2000. Birkhäuser Verlag.
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[25] Denis Zorin, Peter Schröder, and Wim Sweldens. Interactive multiresolution
mesh editing. Proceedings of SIGGRAPH 97, pages 259–268, August 1997.
ISBN 0-89791-896-7. Held in Los Angeles, California.

5



noisy mesh �w = 12% noisy mesh �w = 4:3%

Figure 5: Denoising a simple mesh with artificial noise for different choices of estimated noise �w (98 thousand triangles).

Figure 6: Denoising the reparameterized Stanford bunny mesh. (71 thousand triangles, 145 thousand after parameterization). From left to
right: the reparameterized mesh; denoised by our algorithm; by anisotropic geometric diffusion method.

noisy mesh �w = 1:4% details

Figure 7: Denoising a part of the model of Michalangelo’s David. (scanned at 0.29mm resolution; unstructured mesh 0.63 mln. triangles,
1,2 mln. triangles after parameterization). Denoising time: 167 secs. Original mesh courtesy of Marc Levoy, Stanford Computer Graphics
Lab. From left to right: original mesh; denoised mesh; magnified views of two areas on the mesh before and after denoising. Note that chisle
marks in the first area are preserved, while the small-scale noise is removed.

Figure 8: Denoising a scanned and parameterized model of a Ascension Technologies transmitter. From left to right: original model;
magnified view of an area before and after denoising. Note that in the flat areas all small scale features were removed, with almost no change
at the creases.
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Abstract. We present a novel method for texture synthesis on surfaces from
examples. We consider a very general type of textures, including color, trans-
parency and displacements. Our method synthesizes the texture directly on the
surface, rather than synthesizing a texture image and then mapping it to the sur-
face. This approach avoids many problems associated with texture mapping, such
as seams, distortion, and repeating patterns. The synthesized textures have the
same qualitative visual appearance as the example texture, and cover the surfaces
seamlessly, without distortion. We describe two synthesis methods, based on the
work of Wei and Levoy and Ashikhmin; our techniques produce similar results
but directly on surfaces.

1 Introduction

Computer graphics applications increasingly require surfaces with highly detailed re-
flective properties, geometry and transparency. Constructing such detailed appearances
manually is a difficult and tedious task. A number of techniques have been proposed to
address this problem; procedural synthesis techniques are among the most widely-used.
Most recently, a number of techniques [5, 18, 3] make it possible to synthesize textures
for objects from examples.

Creating a surface with a complex appearance can be viewed as synthesis of a col-
lection of functions on an arbitrary two-dimensional domain. (This assumes that the
topology of the surface does not change, but the geometry can change). These func-
tions typically include color, transparency, normals and coordinates of surface points.
We will refer to all such functions as textures. Note that textures can be thought of
as continuous and defined directly on surfaces, although they will be represented as
samples in implementation. In this view, previous example-based texture synthesis al-
gorithms synthesize attributes for a special kind of surfaces: flat rectangles.

In this paper, we show how synthesis from examples can be extended to synthe-
sis on surfaces. The obvious approach to the problem, synthesizing an attribute on a
rectangle and mapping it to an arbitrary surface, produces many artifacts (e.g. seams)
and requires solving a fundamentally difficult problem of mapping a rectangle to an
arbitrary surface with minimal distortion. Typically, creating such maps requires con-
siderable user intervention. In general, performing synthesis directly on a surface will
give better results than synthesizing a texture on a rectangle and then mapping it to a
surface.

Existing texture synthesis methods rely on the presence of identical, regular sam-
pling patterns for both the example and the synthesized texture. Therefore, it is impos-
sible to apply such methods directly to surfaces. In this paper, we regard the example
and the synthesized texture as continuous functions that happen to be represented by
samples, but not necessarily laid out in identical patterns. Whenever necessary, we
resample either the example or the synthesized texture on a different pattern.

1



We describe two specific synthesis methods, based on the methods of Wei and
Levoy [18] and Ashikhmin [3]. As with image synthesis, the choice of algorithm de-
pends primarily on the texture.

The main contributions of this paper are: Generalizations of existing image texture
synthesis methods to synthesis on surfaces; synthesis of surface texture maps indepen-
dent of parameterization; efficient and accurate neighborhood sampling operations; and
synthesis of texture, transparency, and displacements.

2 Previous Work

The problem of synthesizing texture from examples has recently enjoyed a renaissance
of research interest. A popular approach from the vision community is Markov Random
Fields (MRF) modeling, in which one models the joint probability densities of image
features (e.g. oriented Gabor filter responses or steerable filter responses) from a texture
(e.g. Zhu et al. [19], Portilla and Simoncelli [14]). However, MRF algorithms typically
require a time-consuming optimization in order to create an image with statistics that
match the model. Heeger and Bergen [9] model texture in terms of filter histograms,
and produce textures with matching histograms.

Recently, several nearest-neighbor methods have been shown to produce high qual-
ity textures; these algorithms may be viewed as approximating an MRF. De Bonet [4]
demonstrates a coarse-to-fine procedure that fills in pixels in an output texture im-
age pyramid by copying pixels from the example texture with similar coarse image
structure. Efros and Leung [5] create textures in a single scale using a single-scale
neighborhood. Wei and Levoy [18] combine these methods, by using a neighborhood
that contains both coarse-scale and same-scale pixel information. Tree-structured vec-
tor quantization (TSVQ) [6] is used to accelerate the search for the nearest neighbor.
Ashikhmin [3] produces high-quality textures by copying contiguous texture patches
when possible. This method is very fast, but may produce sharp image discontinuities
in some situations.

Neyret and Cani [13] texture a surface isotropically by tiling from a small collec-
tion of tileable example texture triangles. Praun et al. [15] extend this by placing
oriented texture patches over an independent parameterization of a surface. Although
these methods produce high-quality results for many textures, they have some draw-
backs: they cannot capture low-frequency texture without sacrificing high-frequency
randomness, and the texture patches do not necessarily line up exactly, which requires
blending to prevent discontinuities between patches.

Existing methods for example-based surface synthesis interpolate existing shapes
via 3D morphing (e.g. [17, 1, 16]). In contrast, our work generates shapes that have
similar statistics to examples.

3 Overview

Given a 2D example and a 3D surface, our goal is to create a texture that “looks like” it
came from the same process that generated the example. We make the assumption that
this is equivalent to requiring the texture on every small surface neighborhood to “look
like” the texture on some neighborhood in the example.1 The example and synthesized

1This formulation is based on the Markov condition assumption on the texture: we assume that the texture
has local statistics (the value at a point depends only on its local neighborhood), and stationary statistics (the
dependence is the same for every point). These assumptions imply that the the surface texture will look like
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texture will be discretized into samples, although not necessarily with the same sample
density. The texture may be from any domain: in particular, we explore image textures,
transparency textures and geometric textures. For brevity, we refer to the synthesized
texture as target.

Texture representation: For simplicity, we assume that the example texture is resam-
pled on a rectangular sampling grid, i.e. that it is an image. The target texture is repre-
sented by samples on the surface. We assume that there is a collection of rectangular
images mapped to the surface and the texture samples will be stored in these images.

An important feature of our approach is that the synthesis process is independent
of the choice of the texture-mapping parameterization: given a parameterization, our
method will synthesize a texture without distortion on the surface.

Images mapped to surfaces are usually called texture maps. However, using this
term in our context would result in considerable confusion; we use the term image
maps instead.

Idea of the algorithms: The basic idea of our algorithms is quite simple. For each
sample of the target texture, we consider the previously-synthesized texture within a
small neighborhood of the sample. Then we locate a neighborhood in the example
on which the texture is similar and copy the value of the texture in the center of the
neighborhood to the target sample.

Several issues need to be addressed to make this idea practical:

• how to pick samples representing a texture on a target neighborhood,
• how to compare neighborhoods in the target and example,
• how to find similar neighborhoods in the example.

The two methods that we describe use somewhat different approaches to these prob-
lems. Each method has its strengths and weaknesses, illustrated in Section 6.

Comparing neighborhoods: Both methods resample on a common sample pattern in
order to make it possible to compare neighborhoods on the example and target.

As most interesting textures are anisotropic, orientation must be established on the
surface. We use a vector field to specify the correspondence between orientation on
the surface and orientation in the domain of the example texture. A pair of orthogonal
tangent vector fields v1 and v2 is used for this purpose. To compare the texture on
the neighborhood on the surface centered at x to a neighborhood centered at y in the
example we establish a map between the neighborhoods, mapping x to y and v1 and v2

to the coordinate directions in the example.
The field v1 is computed using the method described in [10]2. The field v2 is com-

puted as the cross-product of v1 and the oriented surface normal. The field could also
be specified interactively, as in [15].

Synthesis methods: Our first method is based on [18] and described in Section 4. For
each generated sample x, we attempt to find the neighborhood in the entire example
that matches the neighborhood of x as closely as possible. The sampling pattern of the

the example texture if this joint density of texture values is the same for the surface as for the example.
2Since we are optimizing a vector field, and do not desire 90o-invariance as in [10], the optimization

formula is of the form
∑

cos((θi − ϕij) − (θj − ϕji)) instead of
∑

cos 4((θi − ϕij) − (θj − ϕji)).
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example is used to resample the neighborhood of the target. The fixed sampling pattern
makes it possible to accelerate the search with standard nearest-neighbors algorithms,
such as TSVQ.

The second method, based on [3] (Section 5), selects only from example neighbor-
hoods that are spatially coherent in the example with some already-synthesized sample
near x (coherent synthesis). This makes it necessary to track the source of each gen-
erated sample. In this case, we found it possible to use the target sampling pattern
for comparison of neighborhoods, which is simpler than resampling the target. This
makes it impossible to use the acceleration techniques such as TSVQ, as the sampling
patterns on the target vary greatly, but, since only a few neighborhoods will be tested,
acceleration is unnecessary.

4 Multiscale Synthesis

Our first method is based on the multiscale image synthesis procedure of Wei and Levoy
[18]. In this method, we first synthesize a coarse version of the surface texture, and
then perform coarse-to-fine refinement. This method allows us to efficiently capture
both coarse and fine-scale statistics, and to perform several iterative refinements on the
texture.

Our algorithm requires that the surface is covered by an atlas of sufficiently large
overlapping charts, as explained below. We use the multiresolution subdivision sur-
face representation and take advantage of the readily-available charts for such surfaces.
There are several methods available for converting an arbitrary mesh to this represen-
tation [11, 8, 20]. However, such conversion is not fundamentally required for the
algorithm: any method for constructing an atlas of charts can be used.

Our algorithm begins by creating a multiscale hierarchy (a Gaussian pyramid) for
the example image and for each of the image maps in the target. Every level of the
hierarchy will be synthesized, from coarse-to-fine.

For the coarsest level, we iterate over all image maps and iterate over coarse-level
samples in each map (typically, very few samples per map). In order to synthesize a
sample x, we sample the previously synthesized target texture in a neighborhood of x
using the regular pattern of the example. Then we search the example to find the nearest
match under a weighted l2-norm. We weight samples with a Gaussian kernel in image
space. The techniques that we use for sampling are described below. We then copy
the central sample from the best-matching neighborhood to x. This brute-force search
for the best matching neighborhood is rather inefficient; however, there are very few
samples to synthesize or to search at the coarsest level of the pyramid, and so the total
synthesis time at the coarse level is quite small. The very first sample that is synthesized
is copied from a random location in the example texture.

We synthesize each of the remaining levels using a two-pass algorithm based on
Wei and Levoy’s [18] hole-filling algorithm. In the first pass, we synthesize each sam-
ple of a level of the hierarchy using a neighborhood that contains only samples from
the coarser level of the pyramid. In the second pass, we refine the texture at the cur-
rent level using the composition of the square neighborhood from the current level and
one from the coarser level. This means that all samples in each neighborhood have
already been synthesized, allowing us to use TSVQ [6] or Approximate Nearest Neigh-
bors [2] to accelerate the nearest-neighbors searches in both passes. The best match
found during these searches is copied to the target sample. We also introduce some
randomness into the search, with the same randomization used in [4, 18]: We locate the
eight nearest-neighbors matches found during the TSVQ traversal with backtracking,
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(a) (b)

Fig. 1. Surface marching for neighborhood sampling. (a) A 5x5 rectangular surface neighbor-
hood pattern on an image. (b) A corresponding sampling pattern on a surface. From the center
sample, we “march” over the surface, in directions corresponding to the directions in the image
plane. This gives us a set of surface sample locations. Values at each location are determined
by bilinear sampling from the texture map. The orientation of the pattern is determined by the
surface vector field.

discard all matches that have a distance worse than the best match by some factor, and
then randomly pick one of the remaining matches by uniform random sampling.

We use two different methods for sampling neighborhoods on a surface. For the
coarsest levels of the image hierarchy, we use surface marching, in which we traverse
over the smoothed geometry to locate sample points. For the remainder of the image
hierarchy, we perform chart sampling, in which we construct sampling neighborhood
patterns in a globally-defined parametric domain. In our experiments, chart sampling
gives better performs twice as fast; marching is only used for coarse levels where chart
sampling cannot be used (for reasons described below).

4.1 Surface Marching

In the surface marching algorithm, we collect a grid of sample locations that corre-
sponds to a grid of locations in the plane (Figure 1), using a tesselated mesh represen-
tation of the surface. For each sample point, we compute the angle and distance in the
plane to the point. We then draw a straight path from the surface sample point in the
computed distance and direction (with respect to the orientation field on the mesh) to
find the corresponding surface sample point. When the path intersects a mesh edge,
the line is continued on the adjacent face, at the same angle to the mesh edge as on the
previous face.

There are several problems with this approach. First, it is not guaranteed to give
even sampling of a surface neighborhood in irregular geometry. Second, the sampling
pattern is numerically unstable, as minute surface variations can cause substantial vari-
ations in the pattern. Finally, this method is relatively slow, because of the many geo-
metric intersection and projection operations required.

4.2 Chart Sampling

Rather than trying to move on the surface from one face to the next, one can take
advantage of a suitable surface parameterization. Recall that our goal is to be able to
sample the texture at (approximately) regularly spaced locations around a sample x.
Suppose a sufficiently large part of the surface around x is parameterized over a planar
domain V . Then we can sample in the parametric domain V , choosing the sampling
pattern in such a way that the images of the sample points on the surface form the
desired approximately regular arrangement (Figure 2). This can be achieved by using
the Jacobian of the map g from V to the surface to predistort the sampling pattern.
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Fig. 2. Chart sampling. In order to sample the texture in the neighborhood of x, we construct its
sampling pattern in the chart. The pattern is distorted in the chart such that it will be aligned with
the surface orientation field (v1 and v2) and roughly square.

The crucial assumption of the method is that the size of the neighborhood to be
sampled is sufficiently small, so that the parameterization for the neighborhood is suf-
ficiently close to linear and each neighborhood fits on the image of one chart g(V ).
When this does not hold, as happens at the coarsest levels of synthesis, chart sampling
cannot be used and we perform marching instead.

We would like every point of the surface to be far from the boundaries of a chart, so
we design the charts to overlap. There are many different ways to construct atlases of
overlapping charts (e.g. [7]). We have chosen a way that works well for multiresolution
subdivision surfaces [20]. It is important to note that we only use the associated chart
construction in our algorithm. Charts can be also constructed for an arbitrary mesh
using standard texture mapping techniques.

Chart sampling in detail: To explain more precisely how chart sampling is performed
we need some additional notation. Suppose Ui are rectangular domains on which the
surface is parameterized and fi are the parameterizations (Figure 2). For a subdivision
surface, we have one domain per face of the control mesh. In practice, fi are represented
by piecewise-linear approximations defined by arrays of vertices, but it is convenient to
consider fi and other maps as continuous for now. For the multiresolution subdivision
surfaces, the characteristic map can be used to produce charts. Each chart corresponds
to a vertex v. The part of the surface parameterized by the chart is defined on the union
∪ig(Ui) where i indexes all faces sharing v. The chart map g is defined implicitly by
specifying a map Φv

i for each vertex, mapping Ui into a planar domain V . Then g is
taken to be g = fi ◦ (Φv

i )−1 on Φv
i (Ui) ⊂ V .

The values of the maps Φv
i are the values of the characteristic map; these values

can be precomputed depend only on the valence of v. See [20] for further details on
characteristic maps and how they can be computed.

Finally, we assume orthogonal unit tangent vector fields v1 and v2 are defined on
all Ui; these fields may be discontinuous. These fields specify local orientation for
synthesized unisotropic textures.

We use the notation Dh to denote the differential of a map h : Rm → Rn, which is
a linear map given by the matrix (∂hi/∂xj)ij .
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Now we are ready to define the procedure to compute samples. Given a sample x
in the domain U1, we wish to compute a set of samples xlm in domains Ui such that
their images fi(xlm) form a pattern close to a square grid with step δ in each direction,
centered at f1(x). The samples are computed in several steps (Figure 2):

1. Map x to the chart domain V : y = Φv
1(x).

2. Compute vectors τ1 and τ2, such that the differential Df1(DΦv
1)

−1 maps τ1 to
v1 and τ2 to v2; As v1 and v2 are tangent vectors, they can be written as Df1wj

j = 1, 2, for some two-dimensional wj . Then, more explicitly, τj = DΦv
1wj ,

j = 1, 2.
3. Compute samples in the chart domain: ylm = y + lτ1δ +mτ2δ, for l,m = −2..2

(a 5x5 sampling pattern).
4. Map them back to one of the parametric domains Ui, depending on which part

Φv
i (Ui) of the chart domain V ylm is located: xlm = (Φv

i )−1(ylm).

In this procedure, we take advantage of the assumption that the sampling neighbor-
hood is small enough and, on this neighborhood, various maps can be replaced by their
linearized versions.

The maps fi and Φv
i are represented as samples at vertex locations; to find a value

of a map at arbitrary points of each domain Ui, we use bilinear interpolation; to invert
a map we use point location and bilinear interpolation.

Finally, we note that the samples that we generate are stored in an image map. For
any sample, the corresponding point in the parametric domain is computed, using point
location and interpolation for texture coordinates.

When sampling texture values, some neighboring values may not have been gener-
ated yet. If some of the values are missing, then we use the nearest already-generated
neighbor. If none of the values are available, then no sample is generated for this neigh-
borhood at this location.

5 Coherent Synthesis

We now describe the coherent synthesis algorithm, based on Ashikhmin’s algorithm for
image texture synthesis [3]. This algorithm is based on the observation that the l2-norm
is an imperfect measure of perceptual similarity. Instead, it attempts to copy large co-
herent patches from the example texture, since coherent regions are guaranteed to have
the appearance of the example texture, although the seams between patches may not.
This method runs much faster than the other methods and produces higher-quality re-
sults for many textures. The multiresolution representation used in the previous section
is not necessary here. However, like Ashikhmin’s algorithm, this method does not work
well for some smoothly varying textures.

This method runs in a single pass over all samples on the surface. For each syn-
thesized sample, we record the floating point coordinates in the image map that this
sample was copied from. To synthesize a sample x, we find nearby samples which are
already synthesized and use them to look up corresponding locations in the example
texture. We displace these locations in order to obtain candidate source samples for x.
These candidates are chosen so that they correspond to a continuation of the samples
already copied from the example. For each candidate, we collect a neighborhood of
the same connectivity as the original target neighborhood, and compare it to the target
neighborhood. We copy the value of the closest-matching candidate to x. Note that only
a few candidates are considered, so no search acceleration is necessary. This makes it
possible to resample the example texture rather than the target.
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Fig. 3. Coherence synthesis. In order to synthesize a texture value for a point x, we examine each
of its already-synthesized neighbors xi. Each neighbor proposes a candidate location y′

i from the
example, based on its own location in the example and its distance from x on the surface. The
best candidate is computed by comparing the candidate neighborhoods with l2.

Now we describe the algorithm in greater detail. We treat the example texture as
continuous, implying that evaluation between texture samples is done by linear interpo-
lation. The algorithm is illustrated in Figure 3.

1. To synthesize a sample x coming from an image map I , we collect all synthesized
samples xi, i = 0 . . . m in the image map I which are no more than 2 samples
away from x. If x is less than two samples away from the image map boundary,
we also retrieve samples in the image map sharing the boundary with I . Finally,
if x is less than two samples away from a corner of an image map, we also col-
lect adjacent samples from all image maps sharing the corner. If no synthesized
samples are located a random value from the example texture is selected.

2. For each of the collected samples xi, we compute the displacement di = f(xi)−
f(x) of the surface locations, and project it into the tangent plane at f(x) to
obtain tangent displacements dt

i. The tangent displacements can be represented
in the local coordinate system (v1, v2) by 2D vectors ei: dt

i = e1
i v1 + e2

i v2.
3. Our next goal is to locate values in the example that can be potentially used to

synthesize a value for x. For each of the neighboring samples xi, we look up
the corresponding location x′

i in the example texture. We use these samples to
generate candidate locations y′

i = x′
i − ei, i.e. by looking up the value which is

located in the example in the same way with respect to x′
i as x is with respect to

xi. Note that, unlike in Ashikhmin’s method, the location and the displacement
should be represented as floating point numbers in order to prevent round-off
error.

4. Now we need to choose which of the candidates is used to get the value for the
target. To do this, we compare neighborhoods of y′i with the neighborhood of x.
We use the same set of displacements ei, to get samples around y′

i which are ar-
ranged in the same pattern as xi around x, i.e. we consider neighborhoods N(y′i)
consisting of samples y′

ij = y′
i + ej . Among these neighborhoods we choose

the one for which the l2 distance from the the neighborhood of x is minimal
(undefined values are discarded when the distance is computed).
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(a)

(b) (c) (d)

Fig. 4. Surface texture synthesis. (a) Example texture, obtained from VisTex database and down-
sampled to 96x96. (b) Cow model, showing edges corresponding to edges of top-level faces. (c)
Synthesis result using coherent method based on Ashikhmin’s algorithm [3]. (d) Representative
texture maps generated during the process. Variations in surface shape appear as distortions in
the texture maps. The surface is covered by a total of 50 texture maps.

6 Experiments

In Figure 4, we demonstrate coherent synthesis of a nut texture on a cow model. Note
that the image maps appear distorted, because they are synthesized in order to appear
undistorted on the surface. With coherent method, the texture has high quality, but some
small discontinuities are visible. The synthesis took 168 seconds. Figures 5 and 6 show
the transparency and displacement maps created with multiscale synthesis. In Figure 7,
different scales of the same texture were synthesized with multiscale synthesis and the
same vector field. Figure 8 compares the multiscale and coherent algorithms. The qual-
ity of the results is very similar to those of the 2D algorithms when applied to these
textures. In our experience, one can predict the results of the surface synthesis by run-
ning the 2D algorithms. The green texture took 100 seconds with multiscale synthesis
and 28 seconds with coherent synthesis. The flower texture took almost five hours with
multiscale synthesis and two minutes with coherent synthesis. Figure 9 demonstrates
synthesis of transparency maps. The results of coherent synthesis on complex models
are displayed in Figure 10. All the timings are from a 550 MHz Pentium III.

7 Discussion and Future Work

We have presented efficient methods for synthesizing a texture onto a 3D surface from a
2D example texture. For example, these methods produce textures with similar quality
and speed to their 2D counterparts. This means that those textures that work well with
Ashikhmin’s algorithm work well with our coherence algorithm. Hence, there is reason
to hope that these strategies may be applied when new 2D texture synthesis algorithms
are developed.

There are a number of directions for future work. All of our sampling operations
use either point sampling or bilinear sampling. However, since texels represent area
integrals of a function, full area integrals should be used instead. We have designed our
methods to avoid some sampling artifacts while maintaining efficiency; however, more
work remains to be done in order to study and improve the theoretical properties.

Surface reflectance functions and material properties, such as BRDFs or fur [12],
can be synthesized, perhaps via straightforward extensions of the ideas presented here.
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(a) (b) (c)

Fig. 5. (a) Surface with orientation field. Note the singularity of the field at the top of the model.
(b) Synthesized texture using multiscale synthesis of the first texture from Figure 8 in grayscale.
The texture appears consistent at the singularity. (c) Texture mapping and displacement mapping
with the same texture.

(a) (b) (c) (d)

Fig. 6. Textured sphere generated with multiscale synthesis. (a) Example texture. (b) Syn-
thesized texture. (c) Texture mapping plus transparency mapping (using the same texture). (d)
Displacement mapping.

Fig. 7. Zebra dog, generated with multiscale synthesis. Varying the scale parameter creates a
texture with a different size on the surface.
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Examples Multiscale synthesis Coherent synthesis

Fig. 8. Comparison of multiscale (based on Wei-Levoy [18]) and coherent algorithms (based on
Ashikhmin [3]).

Fig. 9. Transparency mapping. Left: Example textures. Middle: Wicker ball, generated from
first texture by multiscale synthesis. Right: Bronze cow, generated by coherent synthesis from
second texture blended with a green surface color.

Fig. 10. Chia cow and sea horse, generated with coherent synthesis.
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Real-time procedural shaders that perform example-based texture synthesis would
allow complex surface textures to be generated in real-time. However, this appears dif-
ficult because the current texture synthesis algorithms require samples to be generated
sequentially.
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Here:
� refineable function setting only
� need tool in spatial domain
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Lifting Scheme
General wavelet construction tool

� 3 stages
� lazy wavelet: split data
� predict: compute detail
� update: compute smooth 

approximation

� algebra only…
� analysis still needs to be performed
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Lazy Wavelet
Subsampling

� split into even and odd samples

even

odd
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Prediction
Use even to predict odd

� keep difference with prediction
� detail = odd - predict( even )

original even

predict
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Prediction

failure to be linear
detail

( )2k2k21k2k aa21ad ++ +−=

detail odd

even
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Update
Even values are subsampled

� aliasing!
� smooth = even + update( detail )

DC components different
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Update
detail zero mean

add

( )k1kk2k dd41as ++= −
detail

even

smooth
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Lifting
General technique

� repeated lifting allows construction 
of all classical wavelets with finite 
support
� basis of JPEG2000

� carries over into arbitrary topology 
setting
� for example: Geometry!
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Decomposition
Subdivision

� prediction operator in lifting 
setting

� differences tend to be small
� better encoding

� hierarchical setting for progressive 
transmission
� zero tree coders
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Loop Wavelets
Refinement relations

� subdivision yields scaling functions

� primal scaling function fixed
� find completion
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Completion
Completion yields wavelet filters

� want finite reconstruction filters
� QMF for Q, but: (SQ)-1 not finite
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Loop Wavelets
Irregular vertices

� split filter around irregular vertex
� results in good conditioning
� boundaries: extension

2

-2
.5

.5

Scaling function, valence 13 Wavelet function, valence 13
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Wavelet Transform
Effect of wavelet transform

� changes distribution of coefficients
� almost all coefficients close to zero

0.27 0.34 0.41 0.49 0.56 0.0 0.8 1.7 2.5 3.3

Vertex coordinates Wavelet coefficients
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Local Frames
Coefficients are vector valued

� normal direction most important!!

� best results with scalar quantization
� finer quantization of normal direction

0 90 180

normal

tangent
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Progressive Encoding
Make each bit count

� no sense in sending approximate 
geometry very precisely…

� sending coefficients one at a time 
not enough
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Encoding
Different options

� coordinates: polar, cartesian
� quantization: vector, scalar

� vector does not pay off
� threshold
� enumerate cell name
� Huffman coding
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Bitplane Encoding
Progressive compression:

� encode largest coefficients first
� encode only significance bit 
� subsequent bits in later iterations
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Zerotree
Why it works

� be smart about the location of 
large coefficients
� small parents tend to have smaller 

children > entropy coding gain

� run state machine at encoder and 
decoder
� only send synchronization bits
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Zerotree Algorithm 
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Zero-Tree
Need tree structure for coefficients

� wavelets live on edges

Test whole tree for significance
� split tree isolating significant coefs
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Visual Comparison

our coder

CPM

Increasing decoding length
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Results III
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Results IV
956B 2004B 4806B 26191B

1253B 2804B 6482B 14844B

4 b/v

2.5 b/v
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More Info
Resources

� examples and executable
� http://multires.caltech.edu/software/pgc

� zerotree code
� http://www.cipr.rpi.edu/research/SPIHT/
� http://www.cs.dartmouth.edu/~gdavis/wavelet/wavelet.html

� questions
� Andrei Khodakovsky, akh@cs.caltech.edu
� Igor Guskov, ivguskov@cs.caltech.edu
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Figure 1: Partial bit-stream reconstructions from a progressive encoding of the Venus head model. File sizes are given in bytes and relative
L2 reconstruction error in multiples of 10−4. The rightmost reconstruction is indistinguishable from the original.

Abstract
We propose a new progressive compression scheme for arbitrary
topology, highly detailed and densely sampled meshes arising from
geometry scanning. We observe that meshes consist of three dis-
tinct components: geometry, parameter, and connectivity informa-
tion. The latter two do not contribute to the reduction of error in
a compression setting. Using semi-regular meshes, parameter and
connectivity information can be virtually eliminated. Coupled with
semi-regular wavelet transforms, zerotree coding, and subdivision
based reconstruction we see improvements in error by a factor four
(12dB) compared to other progressive coding schemes.

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computa-

tional Geometry and Object Modeling - hierarchy and geometric transformations;

G.1.2 [Numerical Analysis]: Approximation - approximation of surfaces and con-

tours, wavelets and fractals; I.4.2 [Image Processing and Computer Vision]: Com-

pression (Coding) - Approximate methods

Additional Keywords: Compression algorithms, signal processing, wavelets, subdi-

vision surfaces, semi-regular meshes, zerotree coding, hierarchical representations

1 Introduction
Today we can accurately acquire finely detailed, arbitrary topology
surfaces with millions and most recently billions [22] of vertices.
Such models place large strains on computation, storage, trans-
mission, and display resources. Compression is essential in these

settings and in particular progressive compression, where an early,
coarse approximation can subsequently be improved through addi-
tional bits. While compression of images has a long history and has
achieved a high level of sophistication, compression of surfaces is
relatively new and still evolving rapidly.

Compression is always a tradeoff between accuracy and bit rate,
i.e., bits per vertex. This tradeoff is the subject of classical rate-
distortion theory. While rate-distortion curves are common in the
image coding literature they have only recently appeared in geome-
try coding. This is partially due to the fact that the error for images
is easily measured using the L2 norm of the difference between
original and approximation, while measuring error for surfaces is
more involved. Since there is no immediate correspondence be-
tween the original and compressed surface, one cannot simply sub-
tract one surface from another. This difficulty is typically addressed
by computing a geometry error using, for example, Hausdorff dis-
tance. Such error metrics do not depend on the particular sample
locations or connectivity, but instead measure the distance between
the geometric shapes. This is important since the original and com-
pressed mesh may have very different sample locations and con-
nectivity, especially in a progressive setting. By sample location
we mean the precise location of the vertex within the surface.

How low can such errors be? Consider a continuous physical sur-
face, such as the Venus sculpture whose scan generated the mesh in
Figure 1. Given that the source geometry is continuous, any dig-
ital representation, such as a triangle mesh, has some error E as-
sociated with it. This error has three components due to sampling,
discretization, and quantization. Sampling error Es arises from ac-
quisition noise. Discretization error Ed is due to the fact that a
triangulation with edge length h can approximate a smooth geome-
try no better than O(h2). Finally, a finite bit representation for the
vertex positions leads to quantization error Eq. The sampling and
triangulation of the model fix Es and Ed. A standard float repre-
sentation typically leads to a quantization error much smaller than
Es+Ed. All existing single rate coders proceed by first quantizing
the vertex positions more coarsely leading to a quantization error
E′q ≈ Es + Ed followed by lossless encoding of the connectiv-
ity and quantized vertex positions. Existing progressive coders aim



to eventually recover the quantized sample locations and original
connectivity. For small meshes with carefully layed out connectiv-
ity and sample locations this is very appropriate. The situation is
different for highly detailed, densely sampled meshes coming from
3D scanning: Since distortion is measured as geometric distance
the sample locations and connectivity can be treated as additional
degrees of freedom to improve the rate-distortion performance. As
long as the final result has geometric error on the order of the orig-
inal E, the actual sample locations and connectivity do not matter.
We will call the information contained in the sample locations, the
parameter information. For example, by letting the vertices slide
within the surface we only change the parameter information and
not the geometric fidelity.

In particular, we propose a new progressive geometry compres-
sion method which is based on smooth semi-regular meshes, i.e.,
meshes built by successive triangle quadrisection starting from a
coarse irregular mesh. Almost all vertices in a semi-regular mesh
have valence six and their sample locations can easily be estimated.
Hence, semi-regular meshes allow us to eliminate almost all param-
eter and connectivity information. As we illustrate below, param-
eter and connectivity information make up a considerable fraction
of the bit budget in existing coders, but do not contribute at all to
reducing geometric error. Consequently our rate-distortion curves
are significantly better than those of existing coders. For most mod-
els, our error is about four times smaller at comparable bit rates, a
remarkable 12 dB improvement!

Semi-regular meshes additionally allow for wavelet transforms
and zerotree coders. Zerotrees are amongst the best image coding
algorithms today. Wavelets have superior decorrelation properties
and allow for subdivision based reconstruction. This means that
in regions where the encoder sets wavelet coefficients to zero the
decoder uses subdivision to reconstruct the geometry. Hence even
highly compressed surfaces are still smooth and visually pleasing.
Figure 1 shows a sequence of progressive reconstructions of the
compressed Venus model at different bitrates.

Goals and Contributions The main contribution of this paper
is the observation that parameter information makes up a significant
fraction of the bit budget while not contributing to error reduction
at all. This motivates our compression algorithm based on semi-
regular meshes.

As input our algorithm takes an irregular mesh describing a 2-
manifold (possibly with boundary) and produces successive ap-
proximations employing semi-regular meshes with little parameter
and connectivity information. The coder first produces a hierar-
chical approximation of the surface which is subsequently encoded
with a zerotree progressive coder. Novel aspects of the algorithm
include
• reducing parameter information through the use of semi-regular

meshes;

• a Loop based wavelet transform for high order decorrelation and
subdivision based reconstruction;

• a novel zerotree hierarchy for primal semi-regular triangle
meshes of arbitrary topology.

We emphasize that our target application is the compression of
densely sampled, highly detailed surfaces. Our algorithm is not ef-
fective when the input geometry is well described by a small, care-
fully layed out mesh. In this case progressive coding is generally
questionable and non-progressive coders are more appropriate and
perform exceedingly well.

1.1 Review of Related Work
Mesh Compression: Algorithms for efficient encoding of ar-
bitrary connectivity meshes have been described both for the pro-
gressive and non-progressive setting (for an excellent overview of

3D geometry compression see [36]). Most of the early efforts
concentrated on finding efficient encodings for mesh connectivity
with the current state of the art at around 2-6b/v (bits per ver-
tex) [37, 13, 35, 29, 28]. Vertex positions are dealt with by perform-
ing an initial quantization followed by predictive coding induced by
the traversal order of the connectivity encoding.

In contrast to single target rate coders, progressive coders aim
to code for a range of rates by allowing reconstruction of interme-
diate shapes using a prefix of the encoded bit stream. Such cod-
ing schemes are typically based on mesh simplification techniques.
Examples include progressive meshes [26, 23, 16], independent set
vertex removal strategies [4], topological surgery [34], and topo-
logical layering [1]. Connectivity bits increase to around 4-10b/v in
these schemes. Prediction of vertex positions is now more naturally
performed in a hierarchical fashion as induced by the associated
mesh simplification. Examples include centroid predictors [34, 4]
as well as higher order predictors [26]. To date, progressivity in
these coders has typically been focused on connectivity encoding.
Rate-distortion theory however says that coordinate values should
be progressively quantized [23, 17] as well: to minimize error at a
given rate one must trade off additional quantization bits for already
present vertices against bits for new vertices and their connectivity.

Wavelets It is well known from image coding that wavelet repre-
sentations are very effective in decorrelating the original data [8, 6],
greatly facilitating subsequent entropy coding. In essence, coarser
level data provides excellent predictors for finer level data, leav-
ing only generally small prediction residuals for the coding step.
For tensor product surfaces many of these ideas can be applied in
a straightforward fashion [8, 33, 12]. However, the arbitrary topol-
ogy surface case is much more challenging. To begin with, wavelet
decompositions of general surfaces were not known until the pio-
neering work in [25]. These constructions were subsequently ap-
plied to progressive approximation of surfaces [2] as well as data
on surfaces [31, 19].

Multiresolution surface representations based on subdivi-
sion [39] and local frame details are closely related to our wavelet
constructions and have proven to be very powerful in a variety of
circumstances. However, they require the initial surface to be rep-
resented by a semi-regular mesh. This has led to the development
of a number of algorithms for remeshing [10, 20, 21, 18].

Zerotree Coders Some of the best wavelet based progressive
coders are based on zerotrees [5, 32, 30]. They effectively exploit
the fact that wavelet coefficients at finer scales tend to be smaller in
magnitude than coefficients at coarser scales in the same region. A
zerotree coder encodes the location of coefficients below threshold
in subtrees. Standard zerotree coders for images are based on a dual
formulation, i.e., coefficients are associated with faces. For primal
hierarchical mesh decompositions using face splits (e.g., quadrisec-
tion of triangles) the data however lives at vertices, not faces. We
show in Section 3.4 how to build zerotree coders for primal hierar-
chies.

Irregular Subdivision Our separation of parameter versus ge-
ometry information is partially inspired by the work done on irreg-
ular subdivision [14] and intrinsic curvature normal flow [7]. They
point out that without the parameter side information, it is impos-
sible to build high order schemes converging to smooth meshes.
Irregular parameter information is inherently hard to encode and
hinders the performance of irregular mesh coders.

2 Geometry, Parameter, and Connectivity
Information

Elimination of parameter and connectivity information is a key in-
gredient of our algorithm. In this section we go into more detail



regarding parameter and connectivity information and how to elim-
inate it.

Previous compression approaches have typically treated triangle
meshes as consisting of two distinct components: connectivity and
vertex positions. State of the art coders are able to encode con-
nectivity of irregular meshes with 2b/v or even less. Hence, it is
argued, vertex positions are much more expensive and their coding
needs further advancement, for example through better predictors.

The main insight of this paper is that there are actually three
components: connectivity, geometry, and parameter information.
The parameter information captures where the sample locations are
within the surface while the geometry information captures the ge-
ometry independent of the sample locations used. So far parameter
and geometry information were treated together.

Consider a vertex of a particular Venus head triangulation. Mov-
ing this vertex slightly within the surface, does not change the dis-
cretization error or geometry information. It only affects the pa-
rameter information. Alternatively, moving the vertex normal to
the surface clearly changes the error and geometry information, but
leaves parameter information unchanged. This illustrates that while
geometry and parameter information are globally intertwined they
disconnect locally: infinitesimally, we may think of parameter in-
formation as being described by displacements in the tangent plane
to the surface. Geometry information on the other hand is normal
to the surface. This implies that from a rate distortion point of view
bits should be allocated preferentially to the local normal direction.
For smooth parameterizations this occurs naturally since prediction
residuals in the tangent plane will be small.

Sphere Example To illustrate the power of the distinction be-
tween geometry, parameter, and connectivity information we con-
sider three triangulations of a sphere (Figure 2). All three meshes
contain the same geometry information and carry the same dis-
cretization error Ed with no sampling noise. The first two meshes
have semi-regular connectivity but different parameter information.
The middle one was generated by jiggling the sample locations
within the sphere, thereby adding significant parameter informa-
tion. The rightmost has irregular connectivity and parameter infor-
mation.

Figure 3 shows the respective rate-distortion curves when using
the state of the art non-progressive coder of Touma and Gotsman
(TG) [37]. We always show non-progressive curves dashed since
these points are not achievable in a progressive manner. In case of
the smooth semi-regular mesh, the TG coder correctly noticed that
it contains almost no connectivity information (0.1 b/v) and almost
no parameter information. Its performance is essentially limited
by the quality of the predictor used. The TG coder for the non-
smooth semi-regular sphere is worse illustrating the bit penalty for
parameter information. The TG coder for the irregular mesh (right)
illustrates the additional overhead from irregular connectivity. This
example demonstrates the tremendous pay off of reducing both con-
nectivity and parameter information in a mesh.

Finally the small curve near the y-axis shows the result of apply-
ing our coder to the smooth semi-regular mesh. It can approximate
the sphere with a relative error of 5 · 10−5 using 166 bytes or .5
b/v. This it not surprising since a sphere has very little geometric
information and a smooth semi-regular mesh is essentially optimal
for our coder. This is where the high order decorrelation and subdi-
vision based reconstruction really pays off. The same effect we see
here so pronounced for the sphere, can also be observed in smooth,
regularly sampled regions of more general surfaces, see Section 4.

3 Algorithm Components
The algorithm accepts as input an arbitrary connectivity 2-manifold
(with boundary) triangulation. In a first step we compute a smooth

Figure 2: Three spherical meshes each with 2562 vertices: smooth
semi-regular (left), non-smooth semi-regular (middle), irregular
(right). They have the same geometry information. The middle one
also has parameter information while the right one has parameter
and connectivity information.
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Figure 3: Rate distortion curves for the triangle meshes from Fig-
ure 2 measured in relative L2 error on a scale of 10−4 as a function
of rate in b/v for TG coordinate quantization levels of 8− 12b.

global parameterization using the MAPS algorithm [21]. This al-
lows us to compute successive adaptive approximations with semi-
regular connectivity. These semi-regular approximations are sub-
sequently wavelet transformed and progressively compressed using
zerotrees. The coarsest level connectivity is encoded using a stan-
dard non-progressive mesh encoder [37]. The decoder may produce
intermediate approximations from any prefix of the bitstream.

We need to define the distance d(X,Y ) between two surfacesX
and Y . Let d(x, Y ) be the Euclidean distance from a point x on X
to the closest point on Y . Then the L2 distance d(X,Y ) is given
by

d(X,Y ) =

(
1

area(X)

∫
x∈X
d(x,Y )2dx

)1/2
.

This distance is not symmetric and we symmetrized it by taking
the max of d(X,Y ) and d(Y,X). For triangulations this distance
can be computed using the METRO tool [3]. All the L2 errors
reported here are relative with respect to the bounding box diagonal
on a scale of 10−4, while rate is reported in b/v with respect to the
number of vertices in the original input mesh.

3.1 Parameterization
As a first step, we compute a smooth parameterization of our in-
put triangulation using MAPS [21]. An important feature of MAPS
is its ability to automatically align iso-parameter lines of the semi-
regular mesh with sharp features of the original input surface help-
ing to avoid large wavelet coefficients near creases.

MAPS builds a bijective map between the input mesh T and a
coarse base domain B. One can then apply quadrisection in the
base domain B and use the mapping to build semi-regular approxi-
mations of T . These approximations have some remeshing errorEr
with respect to T . While this error can be made arbitrarily small, it
does not make sense to make the remeshing error Er smaller than
the discretization error Ed. This roughly occurs when the triangles
from the semi-regular mesh are about the same size as the triangles
of the input mesh. Using smaller triangles only serves to produce a
better approximation of the input mesh, not necessarily of the orig-
inal unknown geometry.



Of course one does not knowEd. An order estimate ofEd can be
computed by measuring the distance between the input mesh T and
a much finer mesh S obtained by Butterfly subdividing T . The lat-
ter serves as a proxy for the unknown original geometry. Once our
semi-regular mesh error Er is below the estimated discretization
error Ed there is no need to further refine the semi-regular mesh.
Hence our rate distortion curves will asymptotically not go to zero,
but converge to the Ed estimate. Table 1 gives the Ed estimate,
the minimum remeshing error, and the connectivity coding cost in
bytes of the base domain B for various models. The connectivity
was encoded using the TG coder.

Feline Bunny Horse Venus Fandisk

# Vert. 49864 34835 48485 50002 6475
Ed (10−5) 7.3 9.4 6.0 5.5 28
Er (10−5) 6.3 7.4 5.1 4.2 4.8
# Base Vert. 250 127 112 196 73
Base conn. (B) 122 76 62 72 46

Table 1: Statistics for example meshes.

3.2 Wavelet Transform
The wavelet transform replaces the original mesh with a coarsest
mesh and a sequence of wavelet coefficients expressing the dif-
ference between successive levels. Since we deal with piecewise
smooth models, neighboring vertices are highly correlated. The
wavelet transform removes a large amount of this correlation. The
distribution of wavelet coefficients is centered around zero and their
magnitude decays at finer levels with the rate of decay related to the
smoothness of the original surface. This behavior of the magnitude
of wavelet coefficients is the key to progressive coding and justifies
the choice of the zerotree coder for the bit encoding of coefficients.

Several methods for building wavelet transforms on semi-regular
meshes exist [25, 31]. These are typically based on interpolating
subdivision schemes such as Butterfly [9, 38]. A detailed descrip-
tion of the construction of lifted Butterfly wavelets can be found
in [31]. The advantage of lifted wavelets is that both forward and
inverse transforms can be computed with finite filters.

We use a novel Loop [24] wavelet transform, which has the ad-
vantage that the inverse transform uses Loop subdivision. Experi-
mentally, we found it has rate distortion curves essentially identical
to Butterfly, but typically better visual appearance.

The choice of Loop subdivision fixes the low pass reconstruc-
tion filter P in a wavelet construction. We require a high pass
reconstruction filter Q. Together they define the inverse wavelet
transform

pj+1 =
[
P Q

] [ pj
dj

]
, (1)

where pj are the usual control points and dj the wavelet coeffi-
cients at level j. For performance reasons we would likeQ to have
small support. One way to achieve this is to apply a quadrature
mirror construction [27], deriving a high pass from a low pass fil-
ter. The result is shown in the regular case in Figure 4. Note that a
globally consistent choice of the sign-flipping direction is possible
only for orientable surfaces. Though we can use the same stencils
in the general case, the wavelet subbands corresponding to edges of
a certain orientation are well-defined only for orientable surfaces.

Around irregular vertices P is modified as usual. For edges im-
mediately adjacent to an irregular vertex, Q must be modified as
well. The only taps of the Q filter that can fall onto irregular ver-
tices are the two −6 coefficients left and right of the center. If one
of them is irregular we essentially “open up” that part of the filter
and parameterize the coefficients by edge number, counting from
the “10” (Figure 4, right). If an irregular vertex has valence less

than six this leads to the stencil folding over on itself, while for
valences larger than six a gap is left. There is currently no theory
available for wavelet constructions around irregular vertices. The
only justification of the “trick” we used is that it does not impact
the numerically computed condition numbers of our transform. Fi-
nally, boundaries are dealt with in the usual way through reflection.
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Figure 4: Low (left) and high (middle) pass Loop reconstruction
filters in the regular case. For irregular vertices the high pass filter
is opened as indicated on the right.

The forward wavelet transform, which goes from finer to coarser
levels, is defined as the solution [pj ,dj] of the linear system in
Eq. 1 for a given pj+1. Consequently computing the forward
wavelet transform requires the solution of sparse linear systems.
To solve these systems we use a bi-conjugate gradient solver [11]
with diagonal preconditioning. We found the condition number for
up to a 7 level transform to be no worse than 30 depending on the
model.

Of course solving a linear system makes the forward transform
slower than the inverse transform. This is acceptable as encoding
is typically done once off-line while decoding happens frequently
and in real time. For the Venus model the Loop forward transform,
for example, takes 30s on a 550Mhz Pentium II Xeon while the
inverse transform takes 2.5s. In case symmetry is important one can
use a lifted Butterfly wavelet for which both forward and inverse
transforms take about 2.5s.

The decorrelating power of the wavelet transform is illustrated
in Figure 5. On the left is the histogram of the magnitude of Venus
vertex positions. On the right is a histogram of the magnitude of
the wavelet coefficients. Clearly a large amount of correlation was
removed and the first order entropy has decreased considerably.

0.3 0.3 0.4 0.5 0.6 0.0 0.8 1.7 2.5 3.3

Figure 5: Left: histogram of vertex position magnitudes for Venus.
Right: histogram of the wavelet coefficient magnitudes, showing the
decorrelation power of the wavelet transform.

3.3 Vector Valued Wavelet Coefficients
Since our wavelet coefficients are vector valued, it is not immedi-
ately clear how they should be quantized. There is a fair amount of
correlation between the x, y, and z wavelet components. We found
that representing the wavelet coefficients in a local frame [39] in-
duced by the surface tangent plane makes the components much
more independent. In particular, we find that the variance of nor-
mal wavelet components is on average twice as large as the variance
of the tangential components. Recalling the earlier geometry ver-
sus parameter distinction this is exactly what we want. In a smooth
semi-regular mesh, the geometry information (normal component)



is much larger than the parameter information (tangential compo-
nent). Figure 6 illustrates this by showing the histograms of the
polar angles θ (the angle from the z of normal axis) of the wavelet
coefficients in global and local coordinate frames. The distribution
becomes very non-uniform in the local frame with peaks around
0 and π indicating that most of the wavelet vectors lie in the nor-
mal direction. The angle along the equator is fairly uniformly dis-
tributed both in the global and local frame, hence the choice of basis
vectors in the tangent plane is not important. Recall that parameter,

0 90 180 0 90 180

Figure 6: Histograms of wavelet coefficient polar θ angles for the
Venus head model in global (left) and local (right) frames. Coeffi-
cients lie mostly in the normal direction.

i.e., tangential, information does not contribute to the error met-
ric. Unfortunately, we cannot just ignore tangential wavelet com-
ponents since this argument only holds in the infinitesimal limit.
Especially at coarser levels, tangential wavelet coefficients can still
contain some geometric information. However, we did find that the
error metric is much less sensitive to quantization error of tangential
versus normal wavelet components. Thus, we can further improve
the error curves by more coarsely quantizing the tangential compo-
nent.

A basic operation in a scalar zerotree coder is the coefficient sig-
nificance test, i.e., checking its magnitude against a threshold. If it
is below, the coefficient is added to a zerotree, else the location and
sign of the coefficient need to be transmitted. For the vector case
this becomes more difficult and we examined three quantization op-
tions. (1) Spherical cells are natural as we can use the magnitude
for the significance test. We deal with the quantized angular com-
ponents as “generalized” signs. (2) For cubical cells we divide the
cube into 64 subcubes. Coefficients in the 8 internal cubes are in-
significant and all the others are significant; their cell number again
is an analog of the angular component. (3) We can deal with each
vector component independently and encode it separately, reducing
the vector case to three independent scalar passes.

We have compared all three cases and found that three scalar
passes results in the best rate distortion curves for all models we
considered. Experimentally, we found that quantization cells for
the tangential component were best taken to be 4 times larger than
those for the normal component.

3.4 Zerotree Coding
Given that we settled on scalar quantization, our coder consists of
three independent zerotree coders. The bits from the three coders
are interleaved to maintain progressivity.

A general principle of wavelet coefficient encoding is to send the
highest order bits of the largest magnitude coefficients first. They
will make the most significant contributions towards reducing error.
Let T0 = max{|ci|} be the maximum magnitude of all coefficients,
then in a first pass the coder should send the locations (index i) of
newly significant coefficients, |ci| > T0/2. Doing so naı̈vely is
expensive. However, if source and receiver agree on a canonical
traversal order the source only has to send the result of the sig-
nificance test S(i) = (|ci| > T ) and, if true, the sign bit of ci. If
coefficients can be organized into canonical sets such that with high
probability all coefficients in a given set are simultaneously below

threshold, a few set-based significance tests can enumerate the lo-
cations of the relevant coefficients. The decay properties of wavelet
coefficients make their hierarchical tree organization the natural set
structure [32, 30, 5]. Coding consists of a number of passes with
exponentially decreasing thresholds Tj+1 = Tj/2. In each pass
significance bits are sent for newly significant coefficients. Addi-
tionally, refinement bits are sent for those coefficients which be-
came significant in an earlier pass. Since source and receiver al-
ready agreed on locations of the latter, no location bits have to be
sent for them. The number of such bit plane passes depends on the
final quantization level. The decoder can reconstruct the geometry
associated with any prefix of the bitstream by running an inverse
wavelet transform on the coefficient bits seen so far.

The main distinction of our setting from the image case is the
construction of the zerotrees. For images, one associates the coef-
ficients with a quadrilateral face and the trees follow immediately
from the face quadtree. While this works also for dual, i.e., face
based subdivision schemes, our triangular transform is primal, i.e,
vertex based.

The main insight is that while scale coefficients are associated
with vertices, wavelet coefficients have a one-to-one association
with edges of the coarser mesh. Vertices do not have a tree struc-
ture, but the edges do. Each edge is the parent of four edges of the
same orientation in the finer mesh as indicated in Figure 7. Hence,
each edge of the base domain forms the root of a zerotree; it groups
all the wavelet coefficients of a fixed wavelet subband from its two
incident base domain triangles. The grouping is consistent for arbi-
trary semi-regular meshes, i.e., no coefficient is accounted for mul-
tiple times or left out.

Figure 7: A coarse edge (left) is parent to four finer edges of the
same orientation (right).

For brevity we do not give the complete coder/decoder algorithm
here, but refer the interested reader to the pseudo code in [30],
which is identical to our implementation with the above quadtree
definition.

A final question concerns the transmission of the scale coeffi-
cients from the coarsest level. These are quantized uniformly. Ex-
perimentally, we found that it is best to send 4 bit planes initially
with the base domain connectivity. Each remaining bitplane is sent
as the zerotrees descend another bit plane.

The zerotree encoding (10 passes) of the Venus model takes 1s
while decoding takes about 0.6s bringing the total decompression
time to about 3.1s. Of course the low rate models can be decom-
pressed faster.

3.5 Entropy Coding
The zerotree algorithm is very effective at exploiting parent-child
coefficient correlations, minimizing the amount of encoded signif-
icance bits. However, the output of the zerotree coder can still be
compressed further through arithmetic coding, which allows for a
fractional number of bits per symbol.

The zerotree coder output contains three different types of infor-
mation, significance bits, refinement bits and sign bits. Refinement
and sign bits tend to be uniformly distributed; hence they are not
entropy coded. Significance bits on the other hand can be further
entropy coded. For early bitplanes most coefficients are insignif-
icant resulting in mostly zero bits. For later bitplanes many coef-
ficients become significant, resulting in mostly one bits. An arith-
metic coder naturally takes advantage of this.
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Figure 8: Rate-distortion curves.

We found that encoding of the significance bits in groups fur-
ther improves performance of entropy coding [30]. Because chil-
dren of any node always appear together during a zerotree pass
we group their significance bits to form symbols of a 2j alpha-
bet (j = 4, 3, 2, 1). The actual number of bits of the alphabet is
the number of children which were left insignificant at the previous
pass. This grouping exploits correlations between magnitudes of
spatially close wavelet coefficients.

4 Results
We compare our Loop based coder against known state of the art
coders for different models. The coders we used are:

• TG: The Touma-Gotsman coder, which is a non progressive
coder. It can be operated at different rates by changing the coor-
dinate quantization between 8 and 12 bits.

• CPM: The compressed progressive mesh coder of Pajarola and
Rossignac [26]. It can start with various quantization sizes. We
found 10 or 12 to work best (and always show the best one).

• MPEG: The non-progressive coder from the MPEG4 standard
which is based on topological surgery [35].

Figure 8 (left) shows the different curves for the Venus model for
bitrates up to 25b/v. The top left shows relative L2 error in units of
10−4. The bottom left shows the same numbers but in a PSNR scale
where PSNR = 20 log10 peak/d, peak is the bounding box diago-
nal and d is the L2 error. One can see that our progressive coder
is about 12dB or a factor 4 better than the progressive CPM coder.
As expected the non-progressive coders are much worse at lower
rates and slightly better at higher rates. Our curve converges to the
remeshing error which is where it crosses the TG curve. Given that
the remeshing error is comparable to the discretization error, any
compression with smaller error is only resolving a particular trian-
gulation more accurately, but not increasing the geometric fidelity.

Figure 8 (right) shows the rate distortion curves for several addi-
tional models. Our curves are again significantly better. Typically
the TG coder crosses our curve below the discretization error. For
the fandisk, which is a model with creases, we used a tagged Loop
transform which preserves the creases. The fandisk does not have

that many triangles which is why the TG coder shows better rate-
distortion performance than the CPM coder.

Figure 9 shows renderings of the different compressed versions
of the model. This demonstrates the visual benefits of using sub-
division based reconstruction. Note that the feline dataset has non-
trivial genus (tail section), while the bunny has a number of holes on
the bottom. For purposes of comparison (in the case of the Venus
head) we have also rendered a number of partial bitstream recon-
structions produced with the CPM coder (Figure 10) at file sizes
comparable to our reconstructions (Figure 1). One could argue that
the results of a more traditional progressive mesh coder could be
improved by a smoothing post-process. However, even at very low
bit rates, bit-plane progressivity in our coder implies that we see
high order bits of significant coefficients at fine levels of the hi-
erarchy early on. The resulting reconstructions always carry more
detail than a straightforward Loop smoothing of some triangle mesh
would capture. Finally Table 2 gives numerical error values for our
coder at a variety of bit rates for the different models.

b/v 1/4 1/2 1 2 4 8

venus 15 6.1 3.1 1.60 0.85 0.55
feline 32 13 5.8 2.5 1.25 0.75
horse 9.7 4.5 2.0 1.05 0.70 0.55
bunny 22 10.8 5.1 2.5 1.40 0.95
fandisk 52 11.9 3.5 1.00 0.60

Table 2: Relative L2 error in units of 10−4 of our coder at various
bitrates.

5 Conclusion and Future Work
In this paper we described a progressive compression algorithm
based on semi-regular meshes, wavelet transforms, and zerotree
coders. Our rate distortion curves are significantly better than
the best known progressive and non-progressive coders. This was
achieved by explicitly treating sample locations and mesh connec-
tivity as degrees of freedom of the coder. The progressive recon-
structions especially at very low bit rates can be of astonishingly
high visual quality.

There are several directions for future work:
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• A mathematically sound theory for the construction of Loop
wavelets around extraordinary vertices, including stability anal-
ysis.

• Construction of Loop wavelet transforms for adaptive semi-
regular meshes. While all our reconstructions are performed
adaptively, currently only lifted wavelets allow for adaptive
analysis.

• Design of wavelet filters more suitable for geometry. Careful
examination of reconstructed geometry reveals some ringing ar-
tifacts with our current wavelets.

• Even for our semi-regular meshes, there is still a fair amount of
tangential information especially on the coarse levels. Recent

work by Guskov et al. [15] shows that it is possible to construct
normal meshes, i.e., meshes in which all wavelet coefficients lie
exactly in the normal direction.

• The issues we discuss in this paper regarding geometry versus
parameterization led to ideas such as coarsely quantizing the
tangential components. These ideas can also be used to further
improve irregular mesh coders.
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Figure 1: Partial reconstructions from a progressive encoding of the dinosaur model. File sizes are given in bytes, errors in multiples of 10−4

and PSNR in dB. The right most model is the original which has 14K vertices (model courtesy of Cyberware).

Abstract

Normal meshes were recently introduced as a new way to repre-
sent geometry. A normal mesh is a multiresolution representation
which has the property that all details lie in a known normal direc-
tion and hence the mesh depends only on a single scalar per vertex.
Such meshes are ideally suited for progressive compression. We
demonstrate such a compression algorithm for normal meshes rep-
resenting complex, arbitrary topology surfaces as they appear in 3D
scanning and scientific visualization. The resulting coder is shown
to exhibit gains of an additional 2-5dB over the previous state of the
art.

1 Introduction

The unrelenting growth of computing power of personal comput-
ers and recent progress in shape acquisition technology facilitate
the wide use of highly detailed meshes in industry and entertain-
ment. Similarly, scientific visualization applications tend to pro-
duce ever finer meshes, such as iso-surfaces. In their raw, ir-
regular form, acquired meshes are complex and often unmanage-
able due to their sheer size and irregularity. It is therefore im-
portant to find more efficient and compact representations. Al-
gorithms for efficient encoding of such meshes have been de-
scribed in both single rate [29, 9, 27, 22, 21] and progressive set-
tings [19, 20, 16, 12, 3, 26, 1]. For an overview of 3D geometry
compression see [28].

One should recognize the fact that compression is always a trade-
off between size and accuracy. That is especially true for meshes
that come from shape acquisition or iso-surface extraction, which
always carry sampling error and acquisition noise. Hence the com-
pression can be lossy as long as the approximation error is com-
parable with the sampling error. Recently, a number of efficient
“remeshing” techniques have appeared that replace the original
mesh with a mesh consisting of a number of “regular” pieces, such

as B-spline [8], NURBS [14], or subdivision connectivity [15, 7]
patches. Naturally, one should also expect that the remeshed model
should behave much better with regards to compression algorithms.
This expectation was confirmed in [13], where the MAPS algo-
rithm [15] was included as part of a progressive geometry coder. In
particular, the paper makes it clear that any mesh representation can
be considered as having three components: geometry, connectivity,
and parameterization; moreover, the last two components are not
relevant for the representation of the geometry. For semi-regular
mesh hierarchies, one can make the (reasonable) assumption that
the normal component of the detail coefficients stores the geometric
information, whereas the tangential components carry the paramet-
ric information (see also [10, 5]).

It is clear that many existing remeshing algorithms remove al-
most all of the connectivity information from the mesh, and also
reduce the parametric information. One may wonder: is it possi-
ble to get rid of the parametric information entirely? The answer
is yes as demonstrated in [11]. In particular, fixing the transform
algorithm to use unlifted Butterfly wavelets it is possible to build
a semi-regular mesh whose details lie in the local normal direc-
tion. Consequently, the geometry of “normal” meshes is fully rep-
resented by one scalar per vertex, instead of the usual three. There-
fore it is natural to use normal meshes for compression as we do in
this paper.

Contribution The goal of this paper is to demonstrate the addi-
tional coding gains possible when employing normal semiregular
meshes rather than standard semiregular remeshes (such as those
produced by MAPS [15]).

2 Compression Algorithms

The progressive geometry coding described in [13] requires three
necessary components: a remeshing algorithm, a wavelet trans-
form, and a zerotree coder. In [13] the MAPS remesher [15] was



used, followed by the Loop or Butterfly wavelet transform. In this
paper, we are using the normal remesher of [11] which was specif-
ically designed to produce detail coefficients with no tangential
components when an unlifted Butterfly wavelet transform is applied
to the produced semi-regular mesh. We use the same zerotree coder
as in [13]. The following sections will briefly overview the algo-
rithms used for compression. For a more detailed exposition, the
reader is referred to [13] and [11].

2.1 Normal Meshes

The normal remesher starts with an arbitrary irregular mesh, and
proceeds to build a semi-regular mesh hierarchy approximating the
original model. The algorithm is described in [11] and consists of
two stages. Using mesh simplification, a base mesh is chosen that
is topologically equivalent to the original mesh. The connectivity
of this base mesh will eventually become the connectivity of the
coarsest level in the semi-regular hierarchy. Also at this stage a
net of surface curves is initialized that splits the irregular mesh into
a number of non-intersecting regions (these regions are in a one-
to-one correspondence with the coarsest level faces of the semi-
regular mesh we are constructing). Next, the net of surface curves
is propagated to the finest level of the original irregular mesh, and a
relaxation of global vertex positions within the surface is performed
to even out their distribution and improve aspect ratios of the base
mesh triangles.

In the second stage of the algorithm, a “piercing procedure” is
applied recursively to obtain positions of finer level points of the
semi-regular mesh. Thus, the semi-regular mesh is refined and, to
maintain the status quo, the corresponding regions of the mesh are
split into smaller subregions. A global adaptive parameterization is
maintained on the original mesh in order to keep the piercing pro-
cess under control and to enable fast construction of surface curves.
The described two-stage process produces a semi-regular mesh that
has mostly normal detail coefficients except for a small number of
locations where the piercing did not find any “valid” intersection
point with the original surface. The percentage of non-normal co-
efficients varies depending on the geometric properties of a given
mesh and the corresponding coarse level points chosen in the first
stage of the algorithm. Typically, the number of non-normal coeffi-
cients is below 10% for adaptive meshes that have the same number
of vertices as the original irregular mesh. For a detailed description
of the algorithm refer to [11].

2.2 Wavelet Transform

The wavelet transform replaces a fine semi-regular mesh with some
coarsest level base mesh and a sequence of wavelet coefficients ex-
pressing the difference between successive levels of the mesh hier-
archy. In [13] a novel Loop [17] wavelet transform was described.
It has the advantage that the inverse transform uses Loop subdi-
vision. Several other methods for building wavelet transforms on
semi-regular meshes exist [18, 24]. In this work we use the unlifted
version of Butterfly wavelets [6, 30] because exactly the same trans-
form is used to produce normal meshes. A detailed description of
the construction of Butterfly wavelets can be found in [24].

Note that the Butterfly wavelet transform uses finite filters for
both analysis and reconstruction, and is therefore faster than the
forward Loop transform which requires solving a sparse linear sys-
tem. The Loop reconstruction filter has support of the same size
as the Butterfly filter. On the other hand, we found that the Loop
wavelet transform typically yields better visual appearance than the
Butterfly transform, though comparable error measures.

Typically, the x, y, and z wavelet components are corre-
lated [13]. We exploit this correlation by expressing wavelet co-
efficients in local frames induced by the coarser level. This is es-

pecially true for normal meshes. Almost all wavelet coefficients
computed for normal meshes have only a normal component. Fig-
ure 2 shows histograms of the latitude angles θ (the angle from the
normal axis) of the Butterfly and Loop wavelet coefficients in a lo-
cal coordinate frame. Since the normal mesh is built using butterfly
subdivision almost all Butterfly coefficients have only normal com-
ponents.

0 90 180 0 90 180

Figure 2: Histograms of the Loop (left) and Butterfly (right) wavelet
coefficients latitude θ angle for the Venus head model in a local
frame.

2.3 Zerotree Coding

We encode components of wavelet coefficients separately, that is,
our coder essentially consists of three independent zerotree coders.
The bits from the three coders are interleaved to maintain progres-
sivity.

A general principle of wavelet coefficient encoding is to send the
highest order bits of the largest magnitude coefficients first. They
will make the most significant contributions towards reducing error.
The zerotree algorithm [25, 23, 4] groups all coefficients in hierar-
chical zerotree sets such that with high probability all coefficients
in a given set are simultaneously below threshold.

Figure 3: A coarse edge (left) is parent to four finer edges of the
same orientation (right).

The main distinction of our setting from the image case is the
construction of the zerotrees. For images, one associates the coef-
ficients with a quadrilateral face and the trees follow immediately
from the face quadtree. For semi-regular mesh hierarchies, the main
insight is that while scale coefficients are associated with vertices,
wavelet coefficients have a one to one association with edges of the
coarser mesh. Vertices do not have a tree structure, but edges do.
Each edge is the parent of four edges of the same orientation in the
finer mesh as indicated in Figure 3. Hence, each edge of the base
domain forms the root of a zerotree; it groups all the wavelet coeffi-
cients of a fixed wavelet subband from its two incident base domain
triangles.

The scale coefficients from the coarsest level are quantized uni-
formly and also progressively encoded. Each bitplane is sent as
the zerotree descends another bit plane. Finally, the output of the
zerotree algorithm is encoded using an arithmetic coder.

3 Adaptive Reconstruction

There is a trade-off between remeshing error and the size of the re-
sulting semi-regular mesh. With adaptive remeshing this trade-off
is local. We refine the mesh where the error is maximal and leave
it coarse where the remeshing error is small (Figure 5). Note, that
the coarse remesh and its refinement give the same compression
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Figure 4: Rate distortion for our coder with Butterfly and Loop wavelets using MAPS and normal meshes, TG, and CPM coders for the Venus
model. On the left relative L2 error in multiples of 10−4 as a function of bits/vertex. On the right the PSNR in dB.

performance at low bit-rates, since refinement usually introduces
small details at finer levels. These details are ignored by the ze-
rotree coder at low bit-rates.

Figure 5: Adaptive normal mesh for the skull (19138 vertices) with
relative L2 error of 0.02% and relative L∞ error of 0.09%. The
base mesh is a tetrahedron (4 vertices) while the original mesh has
20002 vertices (model courtesy of Headus).

The compression algorithm is also adaptive. All regions which
are not subdivided to the finest level define zero wavelet coeffi-
cients. These coefficients “virtually” exist as an extension of non-
uniform zerotrees. The zerotree coder is naturally adaptive: There
is no difference between non-uniform and uniform zerotrees with
zeros attached to extra nodes of the latter. During the reconstruction
step we subdivide faces only when we decode a wavelet coefficients
which belongs to those faces. After we decode all coefficients we
subdivide all faces until we meet an adaptive flatness threshold [31].
This step is important since we want to produce smooth surfaces
even at low bit-rates. The flatness threshold is controlled by the
user and can be chosen depending on the reconstruction bit-rate.

4 Results and Discussion

We measured the performance of our coder [13] with normal
meshes using both Butterfly and Loop wavelet transforms. For
comparison we use the CPM coder of Pajarola and Rossignac [19]
and the single-rate coder of Touma and Gotsman [29]. We plotted
rate-distortion curves for Touma-Gotsman coder by changing the
coordinate quantization between 8 and 12 bits. Also, we compare
our results with the performance of the coder of [13] for the Venus,
horse and rabbit models.

Error was measured using the publicly available METRO
tool [2]. All graphs show error between the reconstruction and
the irregular original model as a function of the number of bits
per vertex of the original mesh. All errors are given as PSNR
(PSNR= 20 log10 BBoxDiag/L2-error).

Venus rabbit horse dinosaur skull molecule

Vor 50K 67K 48K 14K 20K 10K
Vb 42 71 112 128 4 53
Er, 10

−4 0.47 0.47 0.51 1.7 2.3 6.3
rn 1580 759 754 2973 1861 794

Table 1: Number of vertices in original models (Vor), base domain
of remeshes (Vb), relative L2 error (Er) in units of 10−4, and the
number of non-normal coefficients (rn).

We found that the coding with normal meshes has better perfor-
mance compared to MAPS meshes. Even using a Loop wavelet
transform we observe an improvement. For example, for the horse
model Loop (Figure 6) wavelets on the normal mesh allow 1.5 times
(3.5dB) smaller distortion than on the MAPS mesh. Note, that an
improvement in the high bit-rate limit is due to the smaller remesh-
ing error. More important is that we have better distortion for all
bit-rates which happens because of the normality of the mesh. The
additional improvement of about a factor of 1.2 (1.5dB) comes from
using Butterfly wavelets summing up to a total of 5dB improvement
compared to [13]. For the rabbit and Venus models MAPS meshes
are closer to normal so the coders using MAPS and normal meshes
have closer performance. However we still observe an improve-
ment of at least 2dB.

The fact that encoding with Loop wavelets benefits from But-
terfly normal meshes is remarkable. Experimentally we found that
if we treat wavelet components completely separately, Loop nor-
mals compress better than Butterfly normals. Given this evidence
we should expect further improvement with Loop based normal
meshes.

Figure 7 shows rate-distortion curves for the dinosaur, skull, and
molecule models. These have coarser original meshes, therefore
we allow a larger remeshing error (see the discussion on the natu-
ral choice of remeshing error in [13]). Note, that the remesh of the
skull model has less vertices than the original, and has a reasonably
small remeshing error. The base domain for the skull is a tetrahe-
dron. For all the meshes mentioned in this paper, the remeshing step
of our algorithm takes less than 10 minutes to complete. The for-
ward Loop transform of the coder requires the solution of a sparse
linear system, which takes about 30 seconds. Loop reconstruction
and both Butterfly forward and backward transforms take 2-3 sec-
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onds. Zerotree encoding and decoding take about 1 second.

5 Conclusions

In this paper we show that normal meshes improve performance
of progressive geometry compression. We observe improvement
of 2-5 dB depending on the model. Also we described adaptive
compression which allows finer control on the number of vertices
in the reconstructed model.

One of the directions for the future work is the design of normal
meshes using Loop wavelets.
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[30] ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. Interpolating subdivision for
meshes with arbitrary topology. Proceedings of SIGGRAPH 96 (1996), 189–192.

[31] ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. Interactive multiresolution
mesh editing. Proceedings of SIGGRAPH 97 (1997), 259–268.




